Génération ancrée avec des données Inline et Vertex AI Search

Génération ancrée avec des données Inline et Vertex AI Search

En savoir plus

Pour obtenir une documentation détaillée incluant cet exemple de code, consultez les articles suivants :

Exemple de code

Python

Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Search pour Python.

Pour vous authentifier auprès de Vertex AI Search, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

from google.cloud import discoveryengine_v1 as discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_number = "YOUR_PROJECT_NUMBER"
# engine_id = "YOUR_ENGINE_ID"

client = discoveryengine.GroundedGenerationServiceClient()

request = discoveryengine.GenerateGroundedContentRequest(
    # The full resource name of the location.
    # Format: projects/{project_number}/locations/{location}
    location=client.common_location_path(project=project_number, location="global"),
    generation_spec=discoveryengine.GenerateGroundedContentRequest.GenerationSpec(
        model_id="gemini-2.5-flash",
    ),
    # Conversation between user and model
    contents=[
        discoveryengine.GroundedGenerationContent(
            role="user",
            parts=[
                discoveryengine.GroundedGenerationContent.Part(
                    text="How did Google do in 2020? Where can I find BigQuery docs?"
                )
            ],
        )
    ],
    system_instruction=discoveryengine.GroundedGenerationContent(
        parts=[
            discoveryengine.GroundedGenerationContent.Part(
                text="Add a smiley emoji after the answer."
            )
        ],
    ),
    # What to ground on.
    grounding_spec=discoveryengine.GenerateGroundedContentRequest.GroundingSpec(
        grounding_sources=[
            discoveryengine.GenerateGroundedContentRequest.GroundingSource(
                inline_source=discoveryengine.GenerateGroundedContentRequest.GroundingSource.InlineSource(
                    grounding_facts=[
                        discoveryengine.GroundingFact(
                            fact_text=(
                                "The BigQuery documentation can be found at https://cloud.google.com/bigquery/docs/introduction"
                            ),
                            attributes={
                                "title": "BigQuery Overview",
                                "uri": "https://cloud.google.com/bigquery/docs/introduction",
                            },
                        ),
                    ]
                ),
            ),
            discoveryengine.GenerateGroundedContentRequest.GroundingSource(
                search_source=discoveryengine.GenerateGroundedContentRequest.GroundingSource.SearchSource(
                    # The full resource name of the serving config for a Vertex AI Search App
                    serving_config=f"projects/{project_number}/locations/global/collections/default_collection/engines/{engine_id}/servingConfigs/default_search",
                ),
            ),
        ]
    ),
)
response = client.generate_grounded_content(request)

# Handle the response
print(response)

Étape suivante

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud , consultez l'explorateur d'exemplesGoogle Cloud .