Individuell anpassbar

Das richtige Feature verwendet Apache Beam-Ressourcenhinweise, um Worker-Ressourcen für eine Pipeline anzupassen. Die Möglichkeit, mehrere verschiedene Ressourcen auf bestimmte Pipelineschritte anzuwenden, bietet zusätzliche Pipelineflexibilität und -funktionen sowie potenzielle Kosteneinsparungen. Sie können teurere Ressourcen auf Pipelineschritte anwenden, die sie benötigen, und weniger teure Ressourcen auf andere Pipelineschritte. Verwenden Sie die richtige Anpassung, um Ressourcenanforderungen für eine gesamte Pipeline oder für bestimmte Pipelineschritte anzugeben.

Unterstützung und Einschränkungen

  • Ressourcenhinweise werden mit den Apache Beam Java SDK und Python SDK Version 2.31.0 und höher unterstützt.
  • Right Fitting wird bei Batchpipelines unterstützt.
  • Right Fitting wird bei Streamingpipelines mit aktiviertem horizontalen Autoscaling unterstützt.

  • Right Fitting unterstützt Dataflow Prime.

  • Right Fitting unterstützt nicht FlexRS.

  • Wenn Sie die richtige Anpassung verwenden, verwenden Sie nicht die Dienstoption worker_accelerator.

Richtige Anpassung aktivieren

Verwenden Sie einen oder mehrere verfügbare Ressourcenhinweise in Ihrer Pipeline, um die richtige Anpassung zu aktivieren. Wenn Sie in Ihrer Pipeline einen Ressourcenhinweis verwenden, wird die korrekte Anpassung automatisch aktiviert. Weitere Informationen finden Sie im Abschnitt Ressourcenhinweise verwenden in diesem Dokument.

Verfügbare Ressourcenhinweise

Die folgenden Ressourcenhinweise sind verfügbar:

Ressourcenhinweis Beschreibung
min_ram

Die Mindestmenge an RAM in Gigabyte, die Workern zugewiesen werden soll. Dataflow verwendet diesen Wert als Untergrenze, wenn neuen Workern (horizontale Skalierung) oder vorhandenen Workern (vertikale Skalierung) Arbeitsspeicher zugewiesen wird.

Beispiel:

min_ram=NUMBERGB
  • Ersetzen Sie NUMBER durch den minimalen Wert für den Worker-Arbeitsspeicher, den die Pipeline oder der Pipelineschritt benötigt.
  • min_ram ist eine Zusammenfassung pro Worker-Spezifikation. Es ist keine Spezifikation pro vCPU. Wenn Sie beispielsweise min_ram=15GB festlegen, legt Dataflow den für alle vCPUs im Worker verfügbaren aggregierten Arbeitsspeicher auf mindestens 15 GB fest.
accelerator

Eine vom Nutzer bereitgestellte Zuweisung von GPUs, mit der Sie die Nutzung und Kosten von GPUs in Ihrer Pipeline und deren Schritten steuern können. Geben Sie den Typ und die Anzahl der GPUs an, die an Dataflow-Worker als Parameter für das Flag angehängt werden sollen.

Beispiel:

accelerator="type:GPU_TYPE;count:GPU_COUNT;machine_type:MACHINE_TYPE;CONFIGURATION_OPTIONS"
  • Ersetzen Sie GPU_TYPE durch den zu verwendenden GPU-Typ. Eine Liste der GPU-Typen, die mit Dataflow unterstützt werden, finden Sie unter Dataflow-Unterstützung für GPUs.
  • Ersetzen Sie GPU_COUNT durch die Anzahl der zu verwendenden GPUs.
  • Optional: Ersetzen Sie MACHINE_TYPE durch den Maschinentyp, der mit Ihren GPUs verwendet werden soll.
    • Der Maschinentyp muss mit dem ausgewählten GPU-Typ kompatibel sein. Weitere Informationen zu GPU-Typen und ihren kompatiblen Maschinentypen finden Sie unter GPU-Plattformen.
    • Wenn Sie einen Maschinentyp sowohl im Ressourcenhinweis accelerator als auch in der Pipelineoption des Worker-Maschinentyps angeben, wird die Pipelineoption während der richtigen Anpassung ignoriert.
  • Wenn Sie NVIDIA-GPUs mit Dataflow verwenden möchten, legen Sie die Konfigurationsoption install-nvidia-driver fest.

Weitere Informationen zur Verwendung von GPUs finden Sie unter GPUs mit Dataflow.

Verschachtelung von Ressourcenhinweisen

Ressourcenhinweise werden so auf die Pipeline-Transformationshierarchie angewendet:

  • min_ram: Der Wert einer Transformation wird als der größte min_ram-Hinweiswert unter den Werten ausgewertet, die für die Transformation selbst und alle übergeordneten Elemente in der Transformationshierarchie festgelegt sind.
    • Beispiel: Wenn ein Hinweis zur inneren Transformation min_ram auf 16 GB und der Hinweis zur äußeren Transformation in der Hierarchie min_ram auf 32 GB festlegt, wird ein Hinweis von 32 GB für alle Schritte in der gesamten Transformation verwendet.
    • Beispiel: Wenn ein Hinweis zur inneren Transformation min_ram auf 16 GB und der Hinweis zur äußeren Transformation in der Hierarchie min_ram auf 8 GB festlegt, wird für alle Schritte in der äußeren Transformation ein Hinweis von 8 GB verwendet, die nicht in der inneren Transformation sind, und für alle Schritte in der inneren Transformation wird ein 16-GB-Hinweis verwendet.
  • accelerator: Der innerste Wert in der Hierarchie der Transformation hat Vorrang.
    • Wenn sich beispielsweise ein Hinweis accelerator zur inneren Transformation von dem Hinweis accelerator zur äußeren Transformation in einer Hierarchie unterscheidet, wird der Hinweis accelerator zur inneren Transformation für die innere Transformation verwendet.

Pipelinehinweise: Hinweise, die für die gesamte Pipeline festgelegt werden, werden so behandelt, als wären sie für eine separate äußerste Transformation festgelegt.

Ressourcenhinweise verwenden

Sie können Ressourcenhinweise für die gesamte Pipeline oder für Pipelineschritte festlegen.

Ressourcenhinweise für Pipelines

Ressourcenhinweise lassen sich für die gesamte Pipeline festlegen, wenn Sie die Pipeline über die Befehlszeile ausführen.

Informationen zum Einrichten Ihrer Python-Umgebung finden Sie im Python-Tutorial.

Beispiel:

    python my_pipeline.py \
        --runner=DataflowRunner \
        --resource_hints=min_ram=numberGB \
        --resource_hints=accelerator="type:type;count:number;install-nvidia-driver" \
        ...

Ressourcenhinweise für Pipelineschritte

Sie können Ressourcenhinweise für Pipelineschritte (Transformationen) programmatisch festlegen.

Java

Informationen zum Installieren des Apache Beam SDK für Java finden Sie unter Apache Beam SDK installieren.

Mit der Klasse ResourceHints können Sie Ressourcenhinweise programmatisch für Pipelinetransformationen festlegen.

Das folgende Beispiel zeigt, wie Ressourcenhinweise programmatisch für Pipeline-Transformationen festgelegt werden.

pcoll.apply(MyCompositeTransform.of(...)
    .setResourceHints(
        ResourceHints.create()
            .withMinRam("15GB")
            .withAccelerator(
    "type:nvidia-l4;count:1;install-nvidia-driver")))

pcoll.apply(ParDo.of(new BigMemFn())
    .setResourceHints(
        ResourceHints.create().withMinRam("30GB")))

Verwenden Sie die ResourceHintsOptions-Oberfläche, um Ressourcenhinweise für die gesamte Pipeline programmatisch festzulegen.

Python

Informationen zum Installieren des Apache Beam SDK für Python finden Sie unter Apache Beam SDK installieren.

Mit der Klasse PTransforms.with_resource_hints können Sie Ressourcenhinweise programmatisch für Pipelinetransformationen festlegen. Weitere Informationen finden Sie im Artikel zur Klasse ResourceHint.

Das folgende Beispiel zeigt, wie Ressourcenhinweise programmatisch für Pipeline-Transformationen festgelegt werden.

pcoll | MyPTransform().with_resource_hints(
    min_ram="4GB",
    accelerator="type:nvidia-tesla-l4;count:1;install-nvidia-driver")

pcoll | beam.ParDo(BigMemFn()).with_resource_hints(
    min_ram="30GB")

Wenn Sie Ressourcenhinweise für die gesamte Pipeline festlegen möchten, verwenden Sie beim Ausführen der Pipeline die Pipelineoption --resource_hints. Ein Beispiel finden Sie unter Ressourcenhinweise für Pipeline.

Go

Ressourcenhinweise werden in Go nicht unterstützt.

Unterstützung mehrerer Beschleuniger

Innerhalb einer Pipeline können verschiedene Transformationen unterschiedliche Beschleunigerkonfigurationen haben. Dazu gehören Konfigurationen, für die unterschiedliche Maschinentypen erforderlich sind. Diese Beschleunigungskonfigurationen auf Transformationsebene haben Vorrang vor der Konfiguration auf Pipelineebene, sofern eine angegeben wurde.

Richtige Anpassung und Zusammenführung

In einigen Fällen können im Rahmen der Zusammenführungsoptimierung Transformationen mit verschiedenen Ressourcenhinweisen auf Workern im selben Worker-Pool ausgeführt werden. Wenn Transformationen zusammengeführt werden, führt Dataflow sie in einer Umgebung aus, die die Vereinigung der auf den Transformationen festgelegten Ressourcenhinweise erfüllt. In einigen Fällen umfasst dies die gesamte Pipeline.

Wenn Ressourcenhinweise nicht zusammengeführt werden können, findet keine Zusammenführung statt. Ressourcenhinweise für verschiedene GPUs können beispielsweise nicht zusammengeführt werden. Daher werden diese Transformationen nicht zusammengeführt.

Sie können die Zusammenführung auch verhindern, indem Sie Ihrer Pipeline einen Vorgang hinzufügen, der Dataflow zwingt, eine zwischengeschaltete PCollection zu realisieren. Das ist besonders nützlich, wenn Sie versuchen, teure Ressourcen wie GPUs oder Maschinen mit viel Arbeitsspeicher von langsamen oder rechenintensiven Schritten zu isolieren, für die diese speziellen Ressourcen nicht erforderlich sind. In diesen Fällen kann es hilfreich sein, einen Fusionsbruch zwischen den langsamen CPU-gebundenen Schritten und den Schritten zu erzwingen, für die die teuren GPUs oder Maschinen mit hohem Arbeitsspeicher erforderlich sind, und die Kosten für die Materialisierung zu tragen, die mit dem Aufbrechen der Fusion verbunden sind. Weitere Informationen finden Sie unter Zusammenführung verhindern.

Individuelle Anpassung für Streaming

Für Streamingjobs können Sie die Anpassung aktivieren, indem Sie die Pipelineoption --experiments=enable_streaming_rightfitting festlegen.

Eine passende Konfiguration kann die Leistung Ihrer Pipeline verbessern, wenn sie Phasen mit unterschiedlichen Ressourcenanforderungen umfasst.

Beispiel: Pipeline mit CPU-intensiver Phase und GPU-erforderlicher Phase

Ein Beispiel für eine Pipeline, die von Right Fitting profitieren kann, ist eine Pipeline, in der eine CPU-intensive Phase ausgeführt wird, gefolgt von einer Phase, die eine GPU erfordert. Ohne Right Fitting muss ein einzelner GPU-Worker-Pool konfiguriert werden, um alle Pipelinephasen auszuführen, einschließlich der CPU-intensiven Phase. Dies kann zu einer Unterauslastung der GPU-Ressourcen führen, wenn im Worker-Pool die CPU-intensive Phase ausgeführt wird.

Wenn Right Fitting aktiviert ist und ein Ressourcenhinweis auf den GPU-erforderlichen Schritt angewendet wird, werden in der Pipeline zwei separate Pools erstellt, sodass die CPU-intensive Phase vom CPU-Worker-Pool und die GPU-erforderliche Phase vom GPU-Worker-Pool ausgeführt wird.

In der Autoscaling-Tabelle für diese Beispielpipeline ist zu sehen, dass der Worker-Pool, der die CPU-intensive Phase Pool 0 ausführt, anfangs auf 99 Worker hochskaliert und später auf 87 Worker herunterskaliert wird. Der Worker-Pool, in dem die GPU-erforderliche Phase Pool 1 ausgeführt wird, wird auf 13 Worker hochskaliert:

Tabelle mit zwei Pools, die automatisch skaliert werden.

Das Diagramm zur CPU-Auslastung zeigt, dass die Worker in beiden Worker-Pools insgesamt eine hohe CPU-Auslastung aufweisen:

Diagramm mit der CPU-Auslastung von Workern aus zwei verschiedenen Pools.

Fehler bei der richtigen Anpassung beheben

In diesem Abschnitt finden Sie eine Anleitung zur Behebung häufiger Probleme im Zusammenhang mit der richtigen Anpassung.

Ungültige Konfiguration

Wenn Sie versuchen, die richtige Anpassung zu verwenden, tritt der folgende Fehler auf:

Workflow failed. Causes: One or more operations had an error: 'operation-OPERATION_ID':
[UNSUPPORTED_OPERATION] 'NUMBER vCpus with NUMBER MiB memory is
an invalid configuration for NUMBER count of 'GPU_TYPE' in family 'MACHINE_TYPE'.'.

Dieser Fehler tritt auf, wenn der ausgewählte GPU-Typ nicht mit dem ausgewählten Maschinentyp kompatibel ist. Wählen Sie einen kompatiblen GPU-Typ und Maschinentyp aus, um diesen Fehler zu beheben. Weitere Informationen zur Kompatibilität finden Sie unter GPU-Plattformen.

Richtige Anpassung prüfen

Sie können prüfen, ob die richtige Anpassung aktiviert ist, indem Sie sich die Autoscaling-Messwerte ansehen und prüfen, ob die Spalte Worker pool sichtbar ist und verschiedene Pools aufgeführt sind:

Tabelle mit dem Worker-Verlauf einer Pipeline mit mehreren Pools, wenn die richtige Anpassung aktiviert ist.

Leistung der richtigen Anpassung beim Streaming

Streaming-Pipelines mit aktivierter Right-Fitting-Funktion haben möglicherweise nicht immer eine bessere Leistung als Pipelines ohne aktivierte Right-Fitting-Funktion. Beispiel:

  1. Die Pipeline verwendet mehr Worker.
  2. Die Systemlatenz ist höher oder der Durchsatz ist niedriger.
  3. Die Größen der Worker-Pools ändern sich häufiger oder stabilisieren sich nicht.

Wenn Sie dieses Verhalten bei Ihrer Pipeline beobachten, können Sie die richtige Anpassung deaktivieren, indem Sie die Pipelineoption --experiments=enable_streaming_rightfitting entfernen. Außerdem können Streamingpipelines, bei denen die richtige Anpassung mit Ressourcenhinweisen für Beschleuniger aktiviert ist, mehr Beschleuniger verwenden als gewünscht. Wenn Sie dies für Ihre Pipeline beobachten, können Sie eine maximale Anzahl von Beschleunigern konfigurieren, die von der Pipeline verwendet werden, indem Sie die Pipelineoption --experiments=max_num_accelerators=NUM festlegen.