Mengembangkan dan men-deploy agen di Vertex AI Agent Engine

Halaman ini menunjukkan cara membuat dan men-deploy agen ke Vertex AI Agent Engine Runtime menggunakan framework agen berikut:

Panduan memulai ini akan memandu Anda melalui langkah-langkah berikut:

  • Siapkan project Google Cloud Anda.

  • Instal Vertex AI SDK untuk Python dan framework pilihan Anda.

  • Mengembangkan agen penukaran mata uang.

  • Men-deploy agen ke Runtime Vertex AI Agent Engine.

  • Uji agen yang di-deploy.

Untuk panduan memulai menggunakan Agent Development Kit, lihat Mengembangkan dan men-deploy agen di Vertex AI Agent Engine dengan Agent Development Kit.

Sebelum memulai

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Roles required to select or create a project

    • Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
    • Create a project: To create a project, you need the Project Creator role (roles/resourcemanager.projectCreator), which contains the resourcemanager.projects.create permission. Learn how to grant roles.

    Go to project selector

  3. Verify that billing is enabled for your Google Cloud project.

  4. Enable the Vertex AI and Cloud Storage APIs.

    Roles required to enable APIs

    To enable APIs, you need the Service Usage Admin IAM role (roles/serviceusage.serviceUsageAdmin), which contains the serviceusage.services.enable permission. Learn how to grant roles.

    Enable the APIs

  5. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Roles required to select or create a project

    • Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
    • Create a project: To create a project, you need the Project Creator role (roles/resourcemanager.projectCreator), which contains the resourcemanager.projects.create permission. Learn how to grant roles.

    Go to project selector

  6. Verify that billing is enabled for your Google Cloud project.

  7. Enable the Vertex AI and Cloud Storage APIs.

    Roles required to enable APIs

    To enable APIs, you need the Service Usage Admin IAM role (roles/serviceusage.serviceUsageAdmin), which contains the serviceusage.services.enable permission. Learn how to grant roles.

    Enable the APIs

  8. Untuk mendapatkan izin yang Anda perlukan guna menggunakan Vertex AI Agent Engine, minta administrator Anda untuk memberi Anda peran IAM berikut di project Anda:

    Untuk mengetahui informasi selengkapnya tentang pemberian peran, lihat Mengelola akses ke project, folder, dan organisasi.

    Anda mungkin juga bisa mendapatkan izin yang diperlukan melalui peran khusus atau peran bawaan lainnya.

    Menginstal dan melakukan inisialisasi Vertex AI SDK untuk Python

    1. Jalankan perintah berikut untuk menginstal Vertex AI SDK untuk Python dan paket lain yang diperlukan:

      LangGraph

      pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,langchain]>=1.112

      LangChain

      pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,langchain]>=1.112

      AG2

      pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,ag2]>=1.112

      LlamaIndex

      pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,llama_index]>=1.112
    2. Mengautentikasi sebagai pengguna

      Colab

      Jalankan kode berikut:

      from google.colab import auth
      
      auth.authenticate_user(project_id="PROJECT_ID")
      

      Cloud Shell

      Tindakan tidak diperlukan.

      Shell Lokal

      Jalankan perintah berikut:

      gcloud auth application-default login

      Mode ekspres

      Jika Anda menggunakan Vertex AI dalam mode ekspres, Anda tidak perlu melakukan tindakan apa pun.

    3. Jalankan kode berikut untuk mengimpor Vertex AI Agent Engine dan menginisialisasi SDK:

      1. (Opsional) Sebelum menguji agen yang Anda kembangkan, Anda perlu mengimpor Vertex AI Agent Engine dan melakukan inisialisasi SDK sebagai berikut:

        Project Google Cloud

        import vertexai
        
        vertexai.init(
            project="PROJECT_ID",               # Your project ID.
            location="LOCATION",                # Your cloud region.
        )
        

        Dengan:

        Mode ekspres

        Jika Anda menggunakan Vertex AI dalam mode ekspres, jalankan kode berikut:

        import vertexai
        
        vertexai.init(
            api_key="API_KEY"
        )
        

        dengan API_KEY adalah kunci API yang Anda gunakan untuk mengautentikasi agen.

      2. Sebelum men-deploy agen, Anda perlu mengimpor Vertex AI Agent Engine dan melakukan inisialisasi SDK sebagai berikut:

        Project Google Cloud

        import vertexai
        
        client = vertexai.Client(
            project="PROJECT_ID",               # Your project ID.
            location="LOCATION",                # Your cloud region.
        )
        

        Dengan:

        Mode ekspres

        Jika Anda menggunakan Vertex AI dalam mode ekspres, jalankan kode berikut:

        import vertexai
        
        client = vertexai.Client(
            api_key="API_KEY"
        )
        

        dengan API_KEY adalah kunci API yang Anda gunakan untuk mengautentikasi agen.

    Mengembangkan agen

    1. Mengembangkan alat penukaran mata uang untuk agen Anda:

      def get_exchange_rate(
          currency_from: str = "USD",
          currency_to: str = "EUR",
          currency_date: str = "latest",
      ):
          """Retrieves the exchange rate between two currencies on a specified date."""
          import requests
      
          response = requests.get(
              f"https://api.frankfurter.app/{currency_date}",
              params={"from": currency_from, "to": currency_to},
          )
          return response.json()
      
    2. Buat instance agen:

      LangGraph

      from vertexai import agent_engines
      
      agent = agent_engines.LanggraphAgent(
          model="gemini-2.0-flash",
          tools=[get_exchange_rate],
          model_kwargs={
              "temperature": 0.28,
              "max_output_tokens": 1000,
              "top_p": 0.95,
          },
      )
      

      LangChain

      from vertexai import agent_engines
      
      agent = agent_engines.LangchainAgent(
          model="gemini-2.0-flash",
          tools=[get_exchange_rate],
          model_kwargs={
              "temperature": 0.28,
              "max_output_tokens": 1000,
              "top_p": 0.95,
          },
      )
      

      AG2

      from vertexai import agent_engines
      
      agent = agent_engines.AG2Agent(
          model="gemini-2.0-flash",
          runnable_name="Get Exchange Rate Agent",
          tools=[get_exchange_rate],
      )
      

      LlamaIndex

      from vertexai.preview import reasoning_engines
      
      def runnable_with_tools_builder(model, runnable_kwargs=None, **kwargs):
          from llama_index.core.query_pipeline import QueryPipeline
          from llama_index.core.tools import FunctionTool
          from llama_index.core.agent import ReActAgent
      
          llama_index_tools = []
          for tool in runnable_kwargs.get("tools"):
              llama_index_tools.append(FunctionTool.from_defaults(tool))
          agent = ReActAgent.from_tools(llama_index_tools, llm=model, verbose=True)
          return QueryPipeline(modules = {"agent": agent})
      
      agent = reasoning_engines.LlamaIndexQueryPipelineAgent(
          model="gemini-2.0-flash",
          runnable_kwargs={"tools": [get_exchange_rate]},
          runnable_builder=runnable_with_tools_builder,
      )
      
    3. Menguji agen secara lokal:

      LangGraph

      agent.query(input={"messages": [
          ("user", "What is the exchange rate from US dollars to SEK today?"),
      ]})
      

      LangChain

      agent.query(
          input="What is the exchange rate from US dollars to SEK today?"
      )
      

      AG2

      agent.query(
          input="What is the exchange rate from US dollars to SEK today?"
      )
      

      LlamaIndex

      agent.query(
          input="What is the exchange rate from US dollars to SEK today?"
      )
      

    Men-deploy agen

    Deploy agen dengan membuat resource reasoningEngine di Vertex AI:

    LangGraph

    remote_agent = client.agent_engines.create(
        agent,
        config={
            "requirements": ["google-cloud-aiplatform[agent_engines,langchain]"],
        },
    )
    

    LangChain

    remote_agent = client.agent_engines.create(
        agent,
        config={
            "requirements": ["google-cloud-aiplatform[agent_engines,langchain]"],
        },
    )
    

    AG2

    remote_agent = client.agent_engines.create(
        agent,
        config={
            "requirements": ["google-cloud-aiplatform[agent_engines,ag2]"],
        },
    )
    

    LlamaIndex

    remote_agent = client.agent_engines.create(
        agent,
        config={
            "requirements": ["google-cloud-aiplatform[agent_engines,llama_index]"],
        },
    )
    

    Menggunakan agen

    Uji agen yang di-deploy dengan mengirimkan kueri:

    LangGraph

    remote_agent.query(input={"messages": [
        ("user", "What is the exchange rate from US dollars to SEK today?"),
    ]})
    

    LangChain

    remote_agent.query(
        input="What is the exchange rate from US dollars to SEK today?"
    )
    

    AG2

    remote_agent.query(
        input="What is the exchange rate from US dollars to SEK today?"
    )
    

    LlamaIndex

    remote_agent.query(
        input="What is the exchange rate from US dollars to SEK today?"
    )
    

    Pembersihan

    Agar akun Google Cloud Anda tidak dikenai biaya untuk resource yang digunakan pada halaman ini, ikuti langkah-langkah berikut.

    remote_agent.delete(force=True)
    

    Langkah berikutnya