Gesichter in einer lokalen Datei erkennen

Führen Sie eine Gesichtserkennung in einer lokalen Datei durch.

Weitere Informationen

Eine ausführliche Dokumentation, die dieses Codebeispiel enthält, finden Sie hier:

Codebeispiel

Go

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Go-Einrichtungsanleitung in der Vision-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vision Go API.

Richten Sie zur Authentifizierung bei Vision die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


// detectFaces gets faces from the Vision API for an image at the given file path.
func detectFaces(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}
	defer client.Close()

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	annotations, err := client.DetectFaces(ctx, image, nil, 10)
	if err != nil {
		return err
	}
	if len(annotations) == 0 {
		fmt.Fprintln(w, "No faces found.")
	} else {
		fmt.Fprintln(w, "Faces:")
		for i, annotation := range annotations {
			fmt.Fprintln(w, "  Face", i)
			fmt.Fprintln(w, "    Anger:", annotation.AngerLikelihood)
			fmt.Fprintln(w, "    Joy:", annotation.JoyLikelihood)
			fmt.Fprintln(w, "    Surprise:", annotation.SurpriseLikelihood)
		}
	}
	return nil
}

Java

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Java-Einrichtungsanleitung in der Vision-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vision Java API.

Richten Sie zur Authentifizierung bei Vision die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.FaceAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.protobuf.ByteString;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectFaces {

  public static void detectFaces() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "path/to/your/image/file.jpg";
    detectFaces(filePath);
  }

  // Detects faces in the specified local image.
  public static void detectFaces(String filePath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));

    Image img = Image.newBuilder().setContent(imgBytes).build();
    Feature feat = Feature.newBuilder().setType(Feature.Type.FACE_DETECTION).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // For full list of available annotations, see http://g.co/cloud/vision/docs
        for (FaceAnnotation annotation : res.getFaceAnnotationsList()) {
          System.out.format(
              "anger: %s%njoy: %s%nsurprise: %s%nposition: %s",
              annotation.getAngerLikelihood(),
              annotation.getJoyLikelihood(),
              annotation.getSurpriseLikelihood(),
              annotation.getBoundingPoly());
        }
      }
    }
  }
}

Node.js

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Node.js-Einrichtungsanleitung in der Vision-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vision Node.js API.

Richten Sie zur Authentifizierung bei Vision die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

async function detectFaces() {
  /**
   * TODO(developer): Uncomment the following line before running the sample.
   */
  // const fileName = 'Local image file, e.g. /path/to/image.png';

  const [result] = await client.faceDetection(fileName);
  const faces = result.faceAnnotations;
  console.log('Faces:');
  faces.forEach((face, i) => {
    console.log(`  Face #${i + 1}:`);
    console.log(`    Joy: ${face.joyLikelihood}`);
    console.log(`    Anger: ${face.angerLikelihood}`);
    console.log(`    Sorrow: ${face.sorrowLikelihood}`);
    console.log(`    Surprise: ${face.surpriseLikelihood}`);
  });
}
detectFaces();

PHP

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der PHP-Einrichtungsanleitung in der Vision-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vision PHP API.

Richten Sie zur Authentifizierung bei Vision die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

namespace Google\Cloud\Samples\Vision;

use Google\Cloud\Vision\V1\ImageAnnotatorClient;

/**
 * @param string $path    Path to the image, e.g. "path/to/your/image.jpg"
 * @param string $outFile Saves a copy of the image supplied in $path with a
 *                        rectangle drawn around the detected faces.
 */
function detect_face(string $path, string $outFile = null)
{
    $imageAnnotator = new ImageAnnotatorClient();

    # annotate the image
    // $path = 'path/to/your/image.jpg'
    $image = file_get_contents($path);
    $response = $imageAnnotator->faceDetection($image);
    $faces = $response->getFaceAnnotations();

    # names of likelihood from google.cloud.vision.enums
    $likelihoodName = ['UNKNOWN', 'VERY_UNLIKELY', 'UNLIKELY',
    'POSSIBLE', 'LIKELY', 'VERY_LIKELY'];

    printf('%d faces found:' . PHP_EOL, count($faces));
    foreach ($faces as $face) {
        $anger = $face->getAngerLikelihood();
        printf('Anger: %s' . PHP_EOL, $likelihoodName[$anger]);

        $joy = $face->getJoyLikelihood();
        printf('Joy: %s' . PHP_EOL, $likelihoodName[$joy]);

        $surprise = $face->getSurpriseLikelihood();
        printf('Surprise: %s' . PHP_EOL, $likelihoodName[$surprise]);

        # get bounds
        $vertices = $face->getBoundingPoly()->getVertices();
        $bounds = [];
        foreach ($vertices as $vertex) {
            $bounds[] = sprintf('(%d,%d)', $vertex->getX(), $vertex->getY());
        }
        print('Bounds: ' . join(', ', $bounds) . PHP_EOL);
        print(PHP_EOL);
    }
}

Python

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Python-Einrichtungsanleitung in der Vision-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vision Python API.

Richten Sie zur Authentifizierung bei Vision die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

def detect_faces(path):
    """Detects faces in an image."""
    from google.cloud import vision

    client = vision.ImageAnnotatorClient()

    with open(path, "rb") as image_file:
        content = image_file.read()

    image = vision.Image(content=content)

    response = client.face_detection(image=image)
    faces = response.face_annotations

    # Names of likelihood from google.cloud.vision.enums
    likelihood_name = (
        "UNKNOWN",
        "VERY_UNLIKELY",
        "UNLIKELY",
        "POSSIBLE",
        "LIKELY",
        "VERY_LIKELY",
    )
    print("Faces:")

    for face in faces:
        print(f"anger: {likelihood_name[face.anger_likelihood]}")
        print(f"joy: {likelihood_name[face.joy_likelihood]}")
        print(f"surprise: {likelihood_name[face.surprise_likelihood]}")

        vertices = [
            f"({vertex.x},{vertex.y})" for vertex in face.bounding_poly.vertices
        ]

        print("face bounds: {}".format(",".join(vertices)))

    if response.error.message:
        raise Exception(
            "{}\nFor more info on error messages, check: "
            "https://cloud.google.com/apis/design/errors".format(response.error.message)
        )

Weitere Informationen

Wenn Sie nach Codebeispielen für andere Google Cloud -Produkte suchen und filtern möchten, können Sie den Google Cloud -Beispielbrowser verwenden.