App für Gesichtserkennung ausführen

Führen Sie die App aus, die Rahmen um erkannte Gesichter in einem Bild zeichnet.

Weitere Informationen

Eine ausführliche Dokumentation, die dieses Codebeispiel enthält, finden Sie hier:

Codebeispiel

Java

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Java-Einrichtungsanleitung in der Vision-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Java-Referenzdokumentation zur Vision API.

Richten Sie zur Authentifizierung bei Vision die Standardanmeldedaten für Anwendungen (ADC) ein. Weitere Informationen finden Sie unter ADC für eine lokale Entwicklungsumgebung einrichten.

/** Annotates an image using the Vision API. */
public static void main(String[] args) throws IOException, GeneralSecurityException {
  if (args.length != 2) {
    System.err.println("Usage:");
    System.err.printf(
        "\tjava %s inputImagePath outputImagePath\n", FaceDetectApp.class.getCanonicalName());
    System.exit(1);
  }
  Path inputPath = Paths.get(args[0]);
  Path outputPath = Paths.get(args[1]);
  if (!outputPath.toString().toLowerCase().endsWith(".jpg")) {
    System.err.println("outputImagePath must have the file extension 'jpg'.");
    System.exit(1);
  }

  FaceDetectApp app = new FaceDetectApp(getVisionService());
  List<FaceAnnotation> faces = app.detectFaces(inputPath, MAX_RESULTS);
  System.out.printf("Found %d face%s\n", faces.size(), faces.size() == 1 ? "" : "s");
  System.out.printf("Writing to file %s\n", outputPath);
  app.writeWithFaces(inputPath, outputPath, faces);
}

Node.js

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Einrichtungsanleitung für Node.js in der Vision-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Node.js-Referenzdokumentation zur Vision API.

Richten Sie zur Authentifizierung bei Vision die Standardanmeldedaten für Anwendungen (ADC) ein. Weitere Informationen finden Sie unter ADC für eine lokale Entwicklungsumgebung einrichten.

async function main(inputFile, outputFile) {
  const PImage = require('pureimage');
  outputFile = outputFile || 'out.png';
  const faces = await detectFaces(inputFile);
  console.log('Highlighting...');
  await highlightFaces(inputFile, faces, outputFile, PImage);
  console.log('Finished!');
}

PHP

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Einrichtungsanleitung für PHP in der Vision-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der PHP-Referenzdokumentation zur Vision API.

Richten Sie zur Authentifizierung bei Vision die Standardanmeldedaten für Anwendungen (ADC) ein. Weitere Informationen finden Sie unter ADC für eine lokale Entwicklungsumgebung einrichten.

call_user_func($imageWriteFunc[$ext], $outputImage, $outFile);
printf('Output image written to %s' . PHP_EOL, $outFile);

Python

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Einrichtungsanleitung für Python in der Vision-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Python-Referenzdokumentation zur Vision API.

Richten Sie zur Authentifizierung bei Vision die Standardanmeldedaten für Anwendungen (ADC) ein. Weitere Informationen finden Sie unter ADC für eine lokale Entwicklungsumgebung einrichten.

def main(input_filename, output_filename, max_results):
    with open(input_filename, "rb") as image:
        faces = detect_face(image, max_results)
        print("Found {} face{}".format(len(faces), "" if len(faces) == 1 else "s"))

        print(f"Writing to file {output_filename}")
        # Reset the file pointer, so we can read the file again
        image.seek(0)
        highlight_faces(image, faces, output_filename)

Nächste Schritte

Wenn Sie nach Codebeispielen für andere Produkte von Google Cloud suchen und filtern möchten, können Sie den Beispielbrowser fürGoogle Cloud verwenden.