대규모 언어 모델(생성형 AI)로 텍스트 분류

텍스트에 클래스 또는 카테고리를 할당하는 분류 태스크를 수행합니다. 선택할 카테고리 목록을 지정하거나 모델이 자체 카테고리에서 선택하도록 지정할 수 있습니다.

코드 샘플

Java

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Java 설정 안내를 따르세요. 자세한 내용은 Vertex AI Java API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.


import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

// Text Classification with a Large Language Model
public class PredictTextClassificationSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String instance =
        "{ \"content\": \"What is the topic for a given news headline?\n"
            + "- business\n"
            + "- entertainment\n"
            + "- health\n"
            + "- sports\n"
            + "- technology\n"
            + "\n"
            + "Text: Pixel 7 Pro Expert Hands On Review, the Most Helpful Google Phones.\n"
            + "The answer is: technology\n"
            + "\n"
            + "Text: Quit smoking?\n"
            + "The answer is: health\n"
            + "\n"
            + "Text: Roger Federer reveals why he touched Rafael Nadals hand while they were"
            + " crying\n"
            + "The answer is: sports\n"
            + "\n"
            + "Text: Business relief from Arizona minimum-wage hike looking more remote\n"
            + "The answer is: business\n"
            + "\n"
            + "Text: #TomCruise has arrived in Bari, Italy for #MissionImpossible.\n"
            + "The answer is: entertainment\n"
            + "\n"
            + "Text: CNBC Reports Rising Digital Profit as Print Advertising Falls\n"
            + "The answer is:\"}";
    String parameters =
        "{\n"
            + "  \"temperature\": 0,\n"
            + "  \"maxDecodeSteps\": 5,\n"
            + "  \"topP\": 0,\n"
            + "  \"topK\": 1\n"
            + "}";
    String project = "YOUR_PROJECT_ID";
    String publisher = "google";
    String model = "text-bison@001";

    predictTextClassification(instance, parameters, project, publisher, model);
  }

  static void predictTextClassification(
      String instance, String parameters, String project, String publisher, String model)
      throws IOException {
    PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {
      String location = "us-central1";
      final EndpointName endpointName =
          EndpointName.ofProjectLocationPublisherModelName(project, location, publisher, model);

      Value.Builder instanceValue = Value.newBuilder();
      JsonFormat.parser().merge(instance, instanceValue);
      List<Value> instances = new ArrayList<>();
      instances.add(instanceValue.build());

      Value.Builder parameterValueBuilder = Value.newBuilder();
      JsonFormat.parser().merge(parameters, parameterValueBuilder);
      Value parameterValue = parameterValueBuilder.build();

      PredictResponse predictResponse =
          predictionServiceClient.predict(endpointName, instances, parameterValue);
      System.out.println("Predict Response");
    }
  }
}

다음 단계

다른 Google Cloud 제품의 코드 샘플을 검색하고 필터링하려면 Google Cloud 샘플 브라우저 참조하기