Opérations TensorFlow disponibles
Cette page répertorie les API et opérateurs de graphes Python pour Tensorflow disponibles sur Cloud TPU.
API Python disponibles
La liste ci-dessous est un guide de l'ensemble des API Python disponibles pour TensorFlow. Cette liste n'est pas exhaustive. Les fonctions de bibliothèque ne figurant pas dans cette liste peuvent fonctionner si elles sont constituées de primitives accessibles.
Pour plus d'informations sur des opérateurs spécifiques, consultez le guide relatif aux performances.
Module | API Python disponible | Commentaires |
---|---|---|
tf |
tf.abs |
|
tf.acosh |
||
tf.add |
||
tf.add_n |
||
tf.angle |
||
tf.arg_max |
L'argument dimension doit être une constante connue à la compilation. |
|
tf.arg_min |
L'argument dimension doit être une constante connue à la compilation. |
|
tf.asinh |
||
tf.assign |
Disponible uniquement pour la variable de ressource. | |
tf.assign_add |
Disponible uniquement pour la variable de ressource. | |
tf.assign_sub |
Disponible uniquement pour la variable de ressource. | |
tf.atan |
||
tf.atan2 |
||
tf.atanh |
||
tf.batch_to_space |
Les arguments crops et block_shape doivent être des constantes connues à la compilation. |
|
tf.batch_to_space_nd |
L'argument crops doit être une constante connue à la compilation. |
|
tf.broadcast_dynamic_shape |
||
tf.broadcast_static_shape |
||
tf.case |
Expérimental (flux de contrôle). Le fonctionnement n'est pas encore totalement fiable. | |
tf.cast |
||
tf.ceil |
||
tf.cholesky |
Expérimental. Susceptible de poser des problèmes de précision numérique. | |
tf.cholesky_solve |
Expérimental. Susceptible de poser des problèmes de précision numérique. | |
tf.clip_by_average_norm |
||
tf.clip_by_global_norm |
||
tf.clip_by_norm |
||
tf.clip_by_value |
||
tf.complex |
||
tf.concat |
concat_dim doit être une constante connue à la compilation. |
|
tf.cond |
Expérimental (flux de contrôle). Le fonctionnement n'est pas encore totalement fiable. | |
tf.conj |
||
tf.constant |
||
tf.convert_to_tensor |
||
tf.cos |
||
tf.cosh |
||
tf.cross |
||
tf.cumprod |
axis doit être une constante connue à la compilation. |
|
tf.cumsum |
axis doit être une constante connue à la compilation. |
|
tf.depth_to_space |
||
tf.diag |
||
tf.diag_part |
||
tf.div |
Une division de int32 est plus lente qu'avec les autres types. |
|
tf.divide |
Une division de int32 est plus lente qu'avec les autres types. |
|
tf.dynamic_stitch |
indices doit être une constante connue à la compilation. |
|
tf.einsum |
||
tf.equal |
||
tf.erf |
||
tf.erfc |
||
tf.exp |
||
tf.expand_dims |
dims doit être une constante connue à la compilation. |
|
tf.expm1 |
||
tf.extract_image_patches |
||
tf.eye |
||
tf.fake_quant_with_min_max_args |
||
tf.fake_quant_with_min_max_args_gradient |
||
tf.fake_quant_with_min_max_vars |
||
tf.fake_quant_with_min_max_vars_gradient |
||
tf.fft |
||
tf.fft2d |
||
tf.fft3d |
||
tf.fill |
L'argument dims doit être une constante connue à la compilation. |
|
tf.floor |
||
tf.floordiv |
||
tf.floormod |
||
tf.foldl |
Expérimental (flux de contrôle). | |
tf.foldr |
Expérimental (flux de contrôle). | |
tf.gather |
axis doit être une constante connue à la compilation. |
|
tf.gather_nd |
||
tf.greater |
||
tf.greater_equal |
||
tf.hessians |
Expérimental (flux de contrôle). | |
tf.identity |
||
tf.identity_n |
||
tf.ifft |
||
tf.ifft2d |
||
tf.ifft3d |
||
tf.imag |
||
tf.invert_permutation |
L'argument x doit être une constante connue à la compilation. |
|
tf.is_finite |
||
tf.is_inf |
||
tf.is_nan |
||
tf.is_non_decreasing |
||
tf.is_strictly_increasing |
||
tf.less |
||
tf.less_equal |
||
tf.linspace |
Les arguments start , stop et num doivent être des constantes connues à la compilation. |
|
tf.log |
||
tf.log1p |
||
tf.log_sigmoid |
||
tf.logical_and |
||
tf.logical_or |
||
tf.logical_not |
||
tf.logical_xor |
||
tf.matmul |
Utilise une multiplication matricielle bfloat16 avec une accumulation float32 . |
|
tf.matrix_band_part |
||
tf.matrix_diag |
||
tf.matrix_diag_part |
||
tf.matrix_set_diag |
||
tf.matrix_triangular_solve |
Expérimental. Susceptible de poser des problèmes de précision numérique. | |
tf.maximum |
||
tf.meshgrid |
||
tf.minimum |
||
tf.mod |
||
tf.multinomial |
L'argument num_samples doit être une constante connue à la compilation. |
|
tf.multiply |
||
tf.negative |
||
tf.no_op |
||
tf.norm |
||
tf.not_equal |
||
tf.one_hot |
depth doit être une constante connue à la compilation. |
|
tf.ones |
||
tf.ones_like |
||
tf.pad |
L'argument paddings doit être une constante connue à la compilation. Le gradient de remplissage REFLECT n'est pas encore disponible. |
|
tf.pow |
||
tf.random_normal |
shape doit être une constante connue à la compilation. |
|
tf.random_uniform |
shape doit être une constante connue à la compilation. |
|
tf.range |
Les arguments start , limit et delta doivent être des constantes connues à la compilation. |
|
tf.rank |
||
tf.real |
||
tf.realdiv |
||
tf.reciprocal |
||
tf.reduce_all |
axis doit être une constante connue à la compilation. |
|
tf.reduce_any |
axis doit être une constante connue à la compilation. |
|
tf.reduce_logsumexp |
||
tf.reduce_max |
axis doit être une constante connue à la compilation. |
|
tf.reduce_min |
axis doit être une constante connue à la compilation. |
|
tf.reduce_prod |
axis doit être une constante connue à la compilation. |
|
tf.reduce_sum |
axis doit être une constante connue à la compilation. |
|
tf.reshape |
L'argument shape doit être une constante connue à la compilation. |
|
tf.reverse |
L'argument dims doit être une constante connue à la compilation. |
|
tf.reverse_sequence |
||
tf.reverse_v2 |
L'argument axis doit être une constante connue à la compilation. |
|
tf.rint |
||
tf.round |
||
tf.rsqrt |
||
tf.saturate_cast |
||
tf.scalar_mul |
||
tf.scan |
Expérimental (flux de contrôle). | |
tf.scatter_nd |
||
tf.sequence_mask |
||
tf.shape |
||
tf.shape_n |
||
tf.sigmoid |
||
tf.sign |
||
tf.sin |
||
tf.sinh |
||
tf.size |
||
tf.slice |
size doit être une constante connue à la compilation. De plus, soit begin doit être une constante de temps compilation, soit size doit être une valeur non négative. La rétropropagation n'est prise en charge que si begin et size sont des constantes connues à la compilation. |
|
tf.space_to_batch |
paddings et block_shape doivent être des constantes connues à la compilation. |
|
tf.space_to_batch_nd |
paddings doit être une constante connue à la compilation. |
|
tf.space_to_depth |
||
tf.split |
axis doit être une constante connue à la compilation. |
|
tf.sqrt |
||
tf.square |
||
tf.squared_difference |
||
tf.squeeze |
||
tf.stack |
||
tf.stop_gradient |
||
tf.strided_slice |
||
tf.tan |
||
tf.tanh |
||
tf.tensordot |
||
tf.tile |
L'argument multiples doit être une constante connue à la compilation. |
|
tf.to_bfloat16 |
||
tf.to_float |
||
tf.to_int32 |
||
tf.to_int64 |
La prise en charge de int64 est limitée. |
|
tf.trace |
||
tf.transpose |
L'argument perm doit être une constante connue à la compilation. |
|
tf.truediv |
||
tf.truncated_normal |
shape doit être une constante connue à la compilation. |
|
tf.truncatediv |
||
tf.truncatemod |
||
tf.unsorted_segment_sum |
||
tf.unstack |
||
tf.where |
x et y doivent avoir une valeur autre que None . Si x et y ont tous les deux la valeur None , la forme de l'opérateur ne sera pas statique. |
|
tf.while_loop |
Le calcul du gradient d'une boucle "while" nécessite que l'argument maximum_iterations soit transmis. |
|
tf.zeros |
||
tf.zeros_like |
||
tf.Tensor.__getitem__ |
Le début, la fin et les pas d'une tranche doivent être des constantes connues à la compilation. | |
tf.bitwise |
tf.bitwise_and |
|
tf.bitwise_or |
||
tf.bitwise_invert |
||
tf.contrib.stateless |
tf.contrib.stateless.stateless_random_normal |
|
tf.contrib.stateless.stateless_random_uniform |
||
tf.image |
tf.image.adjust_brightness |
|
tf.image.adjust_contrast |
||
tf.image.adjust_gamma |
||
tf.image.adjust_hue |
||
tf.image.adjust_saturation |
||
tf.image.central_crop |
Le facteur de recadrage doit être une constante connue à la compilation. | |
tf.image.convert_image_dtype |
||
tf.image.flip_left_right |
||
tf.image.flip_up_down |
||
tf.image.grayscale_to_rgb |
||
tf.image.hsv_to_rgb |
||
tf.image.resize_bilinear |
Seul align_corners=True est disponible. size doit être une constante connue à la compilation. |
|
tf.image.random_brightness |
||
tf.image.random_contrast |
||
tf.image.random_flip_left_right |
||
tf.image.random_flip_up_down |
||
tf.image.random_hue |
||
tf.image.random_saturation |
||
tf.image.rgb_to_hsv |
||
tf.image.rgb_to_grayscale |
||
tf.image.rot90 |
||
tf.image.total_variation |
||
tf.image.transpose_image |
||
tf.layers |
tf.layers.average_pooling1d |
|
tf.layers.average_pooling2d |
||
tf.layers.average_pooling1d |
||
tf.layers.batch_normalization |
||
tf.layers.conv1d |
||
tf.layers.conv2d |
||
tf.layers.conv2d_transpose |
||
tf.layers.conv3d |
||
tf.layers.conv3d_transpose |
||
tf.layers.dense |
||
tf.layers.dropout |
||
tf.layers.flatten |
||
tf.layers.max_pooling1d |
||
tf.layers.max_pooling2d |
||
tf.layers.max_pooling3d |
||
tf.layers.separable_conv2d |
||
tf.nn |
tf.nn.atrous_conv2d |
|
tf.nn.atrous_conv2d_transpose |
||
tf.nn.avg_pool |
||
tf.nn.avg_pool3d |
||
tf.nn.batch_normalization |
||
tf.nn.bias_add |
||
tf.nn.conv1d |
||
tf.nn.conv2d |
||
tf.nn.conv2d_backprop_filter |
||
tf.nn.conv2d_backprop_input |
||
tf.nn.conv2d_transpose |
||
tf.nn.conv3d |
||
tf.nn.conv3d_backprop_filter |
||
tf.nn.conv3d_backprop_input |
||
tf.nn.conv3d_transpose |
||
tf.nn.convolution |
||
tf.nn.crelu |
||
tf.nn.depthwise_conv2d |
||
tf.nn.depthwise_conv2d_native |
||
tf.nn.depthwise_conv2d_native_backprop_filter |
||
tf.nn.depthwise_conv2d_native_backprop_input |
||
tf.nn.dropout |
||
tf.nn.dynamic_rnn |
Expérimental. | |
tf.nn.elu |
||
tf.nn.fused_batch_norm |
||
tf.nn.l2_loss |
||
tf.nn.l2_normalize |
||
tf.nn.leaky_relu |
||
tf.nn.local_response_normalization |
||
tf.nn.log_poisson_loss |
||
tf.nn.log_softmax |
||
tf.nn.max_pool |
||
tf.nn.max_pool3d |
||
tf.nn.moments |
||
tf.nn.normalize_moments |
||
tf.nn.pool |
||
tf.nn.relu |
||
tf.nn.relu6 |
||
tf.nn.relu_layer |
||
tf.nn.selu |
||
tf.nn.separable_conv2d |
||
tf.nn.sigmoid_cross_entropy_with_logits |
||
tf.nn.softmax |
||
tf.nn.softmax_cross_entropy_with_logits |
||
tf.nn.softplus |
||
tf.nn.softsign |
||
tf.nn.sparse_softmax_cross_entropy_with_logits |
||
tf.nn.static_bidirectional_rnn |
Expérimental. | |
tf.nn.static_rnn |
Expérimental. | |
tf.nn.weighted_cross_entropy_with_logits |
Expérimental. | |
tf.nn.weighted_moments |
||
tf.nn.with_space_to_batch |
||
tf.nn.xw_plus_b |
||
tf.nn.zero_fraction |
||
tf.spectral |
tf.spectral.fft |
|
tf.spectral.fft2d |
||
tf.spectral.fft3d |
||
tf.spectral.ifft |
||
tf.spectral.ifft2d |
||
tf.spectral.ifft3d |
||
tf.spectral.irfft |
fft_length doit être une constante connue à la compilation. |
|
tf.spectral.irfft2d |
fft_length doit être une constante connue à la compilation. |
|
tf.spectral.irfft3d |
fft_length doit être une constante connue à la compilation. |
|
tf.spectral.rfft |
fft_length doit être une constante connue à la compilation. |
|
tf.spectral.rfft2d |
fft_length doit être une constante connue à la compilation. |
|
tf.spectral.rfft3d |
fft_length doit être une constante connue à la compilation. |
API Python non disponibles
Cette liste n'est pas exhaustive. Les opérations non disponibles sur Cloud TPU incluent :
Module | API Python non disponible | Commentaires |
---|---|---|
tf |
tf.accumulate_n |
Utilise des variables Ref. |
tf.acos |
||
tf.asin |
||
tf.betainc |
||
tf.bitcast |
||
tf.add_check_numerics_ops |
Les programmes contenant des opérateurs de vérification des nombres devraient s’exécuter, mais ce type d'opérateur n'est actuellement pas pris en compte. | |
tf.assert_... |
Les programmes contenant des assertions devraient s'exécuter, mais les assertions ne sont pas prises en compte. | |
tf.check_numerics |
Les programmes contenant des opérateurs de vérification des nombres devraient s’exécuter, mais ce type d'opérateur n'est actuellement pas pris en compte. | |
tf.confusion_matrix |
||
tf.count_nonzero |
Utilise une réduction int64 . |
|
tf.count_up_to |
||
tf.create_partitioned_variables |
||
tf.dequantize |
||
tf.digamma |
||
tf.dynamic_partition |
||
tf.edit_distance |
||
tf.fake_quant_with_min_max_vars_per_channel |
||
tf.fake_quant_with_min_max_vars_per_channel_gradient |
||
tf.histogram_fixed_width |
||
tf.igamma |
||
tf.igammac |
||
tf.lbeta |
||
tf.lgamma |
||
tf.matrix_determinant |
||
tf.matrix_inverse |
||
tf.matrix_solve |
||
tf.matrix_solve_ls |
||
tf.polygamma |
||
tf.py_func |
||
tf.qr |
||
tf.quantize_v2 |
||
tf.quantized_concat |
||
tf.random_crop |
||
tf.random_gamma |
||
tf.random_poisson |
||
tf.random_shuffle |
||
tf.scatter_add |
||
tf.scatter_div |
||
tf.scatter_mul |
||
tf.scatter_nd_add |
||
tf.scatter_nd_sub |
||
tf.scatter_nd_update |
||
tf.segment_mean |
||
tf.segment_max |
||
tf.segment_min |
||
tf.segment_prod |
||
tf.segment_sum |
||
tf.self_adjoint_eig |
||
tf.self_adjoint_eigvals |
||
tf.setdiff1d |
||
tf.sparse_... |
||
tf.string_... |
||
tf.substr |
||
tf.svd |
||
tf.to_double |
||
tf.unique |
||
tf.unsorted_segment_max |
||
tf.zeta |
||
tf.bitwise.bitwise_xor |
||
tf.contrib.stateless.stateless_truncated_normal |
Opérateurs de graphes disponibles
Opérateur | Contrainte de type |
---|---|
Abs |
T={bfloat16,float,int32,int64} |
Acos |
T={bfloat16,complex64,float,int32,int64} |
Acosh |
T={bfloat16,complex64,float} |
Add |
T={bfloat16,complex64,float,int32,int64} |
AddN |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
AdjustContrastv2 |
T={float} |
AdjustHue |
T={float} |
AdjustSaturation |
T={float} |
All |
Tidx={int32,int64} |
AllToAll |
T={bfloat16,float} |
Angle |
Tout={float} T={complex64} |
Any |
Tidx={int32,int64} |
ApproximateEqual |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ArgMax |
Tidx={int32,int64} output_type={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ArgMin |
Tidx={int32,int64} output_type={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
Asin |
T={bfloat16,complex64,float,int32,int64} |
Asinh |
T={bfloat16,complex64,float} |
Assert |
T={bfloat16,bool,complex64,float,int32,int64,string,uint32,uint64} |
AssignAddVariableOp |
dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
AssignSubVariableOp |
dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
AssignVariableOp |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Atan |
T={bfloat16,complex64,float,int32,int64} |
Atan2 |
T={bfloat16,float} |
Atanh |
T={bfloat16,complex64,float} |
AvgPool |
T={bfloat16,float} |
AvgPool3D |
T={bfloat16,float} |
AvgPool3DGrad |
T={bfloat16,float} |
AvgPoolGrad |
T={bfloat16,float} |
BatchMatMul |
T={bfloat16,complex64,float,int32,int64} |
BatchToSpace |
Tidx={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
BatchToSpaceND |
Tcrops={int32,int64} Tblock_shape={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
BiasAdd |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
BiasAddGrad |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
BiasAddV1 |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
Bitcast |
type={bfloat16,complex64,float,int32,int64,uint32,uint64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
BitwiseAnd |
T={int32,int64,uint32,uint64} |
BitwiseOr |
T={int32,int64,uint32,uint64} |
BitwiseXor |
T={int32,int64,uint32,uint64} |
BroadcastArgs |
T={int32,int64} |
BroadcastGradientArgs |
T={int32,int64} |
BroadcastTo |
Tidx={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Bucketize |
T={float,int32,int64} |
Cast |
DstT={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} SrcT={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Ceil |
T={bfloat16,float} |
CheckNumerics |
T={bfloat16,float} |
Cholesky |
T={float} |
ClipByValue |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
CollectivePermute |
T={bfloat16,float} |
Complex |
Tout={complex64} T={float} |
ComplexAbs |
Tout={float} T={complex64} |
Concat |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ConcatOffset |
|
ConcatV2 |
Tidx={int32} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Conj |
T={complex64} |
ConjugateTranspose |
Tperm={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Const |
dtype={bfloat16,bool,complex64,float,int32,int64,string,uint32,uint64} |
ControlTrigger |
|
Conv2D |
T={bfloat16,float} |
Conv2DBackpropFilter |
T={bfloat16,float} |
Conv2DBackpropInput |
T={bfloat16,float} |
Conv3D |
T={bfloat16,float} |
Conv3DBackpropFilterV2 |
T={bfloat16,float} |
Conv3DBackpropInputV2 |
Tshape={int32,int64} T={bfloat16,float} |
Cos |
T={bfloat16,complex64,float} |
Cosh |
T={bfloat16,complex64,float} |
Cross |
T={bfloat16,float,int32,int64,uint32,uint64} |
CrossReplicaSum |
T={bfloat16,float} |
Cumprod |
Tidx={int32,int64} T={bfloat16,float,int32} |
Cumsum |
Tidx={int32,int64} T={bfloat16,float,int32} |
DataFormatVecPermute |
T={int32,int64} |
DepthToSpace |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
DepthwiseConv2dNative |
T={bfloat16,float} |
DepthwiseConv2dNativeBackpropFilter |
T={bfloat16,float} |
DepthwiseConv2dNativeBackpropInput |
T={bfloat16,float} |
Diag |
T={bfloat16,complex64,float,int32,int64} |
DiagPart |
T={bfloat16,complex64,float,int32,int64} |
Digamma |
T={bfloat16,float} |
Div |
T={bfloat16,complex64,float,int32,int64} |
DivNoNan |
T={float} |
DynamicStitch |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Elu |
T={bfloat16,float} |
EluGrad |
T={bfloat16,float} |
Empty |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
EmptyTensorList |
shape_type={int32,int64} element_dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Equal |
T={bfloat16,bool,complex64,float,int32,int64} |
Erf |
T={bfloat16,float} |
Erfc |
T={bfloat16,float} |
Exp |
T={bfloat16,complex64,float} |
ExpandDims |
Tdim={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Expm1 |
T={bfloat16,complex64,float} |
ExtractImagePatches |
T={bfloat16,float,int32,int64,uint32,uint64} |
FFT |
Tcomplex={complex64} |
FFT2D |
Tcomplex={complex64} |
FFT3D |
Tcomplex={complex64} |
FakeParam |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
FakeQuantWithMinMaxArgs |
|
FakeQuantWithMinMaxArgsGradient |
|
FakeQuantWithMinMaxVars |
|
FakeQuantWithMinMaxVarsGradient |
|
Fill |
index_type={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Floor |
T={bfloat16,float} |
FloorDiv |
T={bfloat16,complex64,float,int32,int64} |
FloorMod |
T={bfloat16,float,int32,int64} |
FusedBatchNorm |
T={float} |
FusedBatchNormGrad |
T={float} |
FusedBatchNormGradV2 |
U={float} T={bfloat16,float} |
FusedBatchNormV2 |
U={float} T={bfloat16,float} |
Gather |
Tindices={int32,int64} Tparams={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
GatherNd |
Tindices={int32,int64} Tparams={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
GatherV2 |
Taxis={int32,int64} Tindices={int32,int64} Tparams={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
GetItem |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Greater |
T={bfloat16,float,int32,int64,uint32,uint64} |
GreaterEqual |
T={bfloat16,float,int32,int64,uint32,uint64} |
HSVToRGB |
T={bfloat16,float} |
IFFT |
Tcomplex={complex64} |
IFFT2D |
Tcomplex={complex64} |
IFFT3D |
Tcomplex={complex64} |
IRFFT |
|
IRFFT2D |
|
IRFFT3D |
|
Identity |
T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
IdentityN |
T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
If |
Tout={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} Tin={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} Tcond={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
Imag |
Tout={float} T={complex64} |
InfeedDequeue |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
InfeedDequeueTuple |
dtypes={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
InplaceAdd |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
InplaceUpdate |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Inv |
T={bfloat16,complex64,float,int32,int64} |
Invert |
T={int32,int64,uint32,uint64} |
InvertPermutation |
T={int32} |
IsFinite |
T={bfloat16,float} |
IsInf |
T={bfloat16,float} |
IsNan |
T={bfloat16,float} |
L2Loss |
T={bfloat16,float} |
LRN |
T={bfloat16,float} |
LRNGrad |
T={bfloat16,float} |
LeakyRelu |
T={bfloat16,float} |
LeakyReluGrad |
T={bfloat16,float} |
LeftShift |
T={int32,int64,uint32,uint64} |
Less |
T={bfloat16,float,int32,int64,uint32,uint64} |
LessEqual |
T={bfloat16,float,int32,int64,uint32,uint64} |
Lgamma |
T={bfloat16,float} |
LinSpace |
Tidx={int32,int64} T={bfloat16,float} |
ListDiff |
out_idx={int32,int64} T={int32,int64} |
Log |
T={bfloat16,complex64,float} |
Log1p |
T={bfloat16,complex64,float} |
LogSoftmax |
T={bfloat16,float} |
LogicalAnd |
|
LogicalNot |
|
LogicalOr |
|
MatMul |
T={bfloat16,complex64,float} |
MatrixBandPart |
Tindex={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
MatrixDiag |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
MatrixDiagPart |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
MatrixSetDiag |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
MatrixTriangularSolve |
T={complex64,float} |
Max |
Tidx={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
MaxPool |
T={bfloat16,float,int32,int64} |
MaxPool3D |
T={bfloat16,float} |
MaxPool3DGrad |
TInput={bfloat16,float} T={bfloat16,float} |
MaxPool3DGradGrad |
T={float} |
MaxPoolGrad |
T={bfloat16,float,int32,int64,uint32,uint64} |
MaxPoolGradGrad |
T={float} |
MaxPoolGradGradV2 |
T={float} |
MaxPoolGradV2 |
T={bfloat16,float,int32,int64,uint32,uint64} |
MaxPoolV2 |
T={bfloat16,float,int32,int64} |
Maximum |
T={bfloat16,float,int32,int64} |
Mean |
Tidx={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
Min |
Tidx={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
Minimum |
T={bfloat16,float,int32,int64} |
MirrorPad |
Tpaddings={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Mod |
T={bfloat16,float,int32,int64} |
Mul |
T={bfloat16,complex64,float,int32,int64} |
Multinomial |
output_dtype={int32,int64} T={bfloat16,float,int32,int64,uint32,uint64} |
Neg |
T={bfloat16,complex64,float,int32,int64} |
NoOp |
|
NonMaxSuppressionV4 |
T={float} |
NotEqual |
T={bfloat16,bool,complex64,float,int32,int64} |
OneHot |
TI={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
OnesLike |
T={bfloat16,bool,complex64,float,int32,int64} |
OutfeedEnqueue |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
OutfeedEnqueueTuple |
dtypes={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Pack |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Pad |
Tpaddings={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
PadV2 |
Tpaddings={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ParallelDynamicStitch |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
PlaceholderWithDefault |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Pow |
T={bfloat16,complex64,float,int32,int64} |
PreventGradient |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Prod |
Tidx={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
Qr |
T={float} |
QuantizeAndDequantizeV2 |
T={bfloat16,float} |
QuantizeAndDequantizeV3 |
T={bfloat16,float} |
RFFT |
|
RFFT2D |
|
RFFT3D |
|
RGBToHSV |
T={bfloat16,float} |
RandomShuffle |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
RandomStandardNormal |
T={int32,int64} dtype={bfloat16,float} |
RandomUniform |
T={int32,int64} dtype={bfloat16,float} |
RandomUniformInt |
T={int32,int64} Tout={int32,int64} |
Range |
Tidx={bfloat16,float,int32,int64} |
Rank |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ReadVariableOp |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Real |
Tout={float} T={complex64} |
RealDiv |
T={bfloat16,complex64,float,int32,int64} |
Reciprocal |
T={bfloat16,complex64,float,int32,int64} |
ReciprocalGrad |
T={bfloat16,complex64,float} |
RecvTPUEmbeddingActivations |
|
Relu |
T={bfloat16,float,int32,int64,uint32,uint64} |
Relu6 |
T={bfloat16,float,int32,int64,uint32,uint64} |
Relu6Grad |
T={bfloat16,float,int32,int64,uint32,uint64} |
ReluGrad |
T={bfloat16,float,int32,int64,uint32,uint64} |
Reshape |
Tshape={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ResizeBilinear |
T={bfloat16,float,int32,int64} |
ResizeBilinearGrad |
T={bfloat16,float} |
ResizeNearestNeighbor |
T={float,int32,int64} |
ResourceApplyAdaMax |
T={bfloat16,float} |
ResourceApplyAdadelta |
T={bfloat16,float} |
ResourceApplyAdagrad |
T={bfloat16,float} |
ResourceApplyAdagradDA |
T={bfloat16,float} |
ResourceApplyAdam |
T={bfloat16,float} |
ResourceApplyAddSign |
T={bfloat16,float} |
ResourceApplyCenteredRMSProp |
T={bfloat16,float} |
ResourceApplyFtrl |
T={bfloat16,float} |
ResourceApplyFtrlV2 |
T={bfloat16,float} |
ResourceApplyGradientDescent |
T={bfloat16,float} |
ResourceApplyKerasMomentum |
T={bfloat16,float} |
ResourceApplyMomentum |
T={bfloat16,float} |
ResourceApplyPowerSign |
T={bfloat16,float} |
ResourceApplyProximalAdagrad |
T={bfloat16,float} |
ResourceApplyProximalGradientDescent |
T={bfloat16,float} |
ResourceApplyRMSProp |
T={bfloat16,float} |
ResourceGather |
Tindices={int32,int64} dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterAdd |
Tindices={int32,int64} dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterDiv |
Tindices={int32,int64} dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterMax |
Tindices={int32,int64} dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterMin |
Tindices={int32,int64} dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterMul |
Tindices={int32,int64} dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterNdAdd |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterNdSub |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterNdUpdate |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterSub |
Tindices={int32,int64} dtype={bfloat16,complex64,float,int32,int64,uint32,uint64} |
ResourceScatterUpdate |
Tindices={int32,int64} dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ResourceStridedSliceAssign |
Index={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Reverse |
T={bool,complex64,float,int32,int64} |
ReverseSequence |
Tlen={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ReverseV2 |
T={bfloat16,bool,complex64,float,int32,int64} Tidx={int32,int64} |
RightShift |
T={int32,int64,uint32,uint64} |
Rint |
T={bfloat16,float} |
Round |
T={bfloat16,complex64,float,int32,int64} |
Rsqrt |
T={bfloat16,complex64,float} |
RsqrtGrad |
T={bfloat16,complex64,float} |
ScatterNd |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Select |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Selu |
T={bfloat16,float} |
SeluGrad |
T={bfloat16,float} |
SendTPUEmbeddingGradients |
|
Shape |
out_type={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
ShapeN |
out_type={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Sigmoid |
T={bfloat16,complex64,float} |
SigmoidGrad |
T={bfloat16,complex64,float} |
Sign |
T={bfloat16,complex64,float,int32,int64} |
Sin |
T={bfloat16,complex64,float} |
Sinh |
T={bfloat16,complex64,float} |
Size |
out_type={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Slice |
Index={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Snapshot |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Softmax |
T={bfloat16,float} |
SoftmaxCrossEntropyWithLogits |
T={bfloat16,float} |
Softplus |
T={bfloat16,float} |
SoftplusGrad |
T={bfloat16,float} |
Softsign |
T={bfloat16,float} |
SoftsignGrad |
T={bfloat16,float} |
SpaceToBatch |
Tpaddings={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
SpaceToBatchND |
Tblock_shape={int32,int64} Tpaddings={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
SpaceToDepth |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
SparseMatMul |
Tb={bfloat16,float} Ta={bfloat16,float} |
SparseSoftmaxCrossEntropyWithLogits |
Tlabels={int32,int64} T={bfloat16,float} |
SparseToDense |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Split |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
SplitV |
Tlen={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Sqrt |
T={bfloat16,complex64,float} |
SqrtGrad |
T={bfloat16,complex64,float} |
Square |
T={bfloat16,complex64,float,int32,int64} |
SquaredDifference |
T={bfloat16,complex64,float,int32,int64} |
Squeeze |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
StackCloseV2 |
|
StackPopV2 |
elem_type={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
StackPushV2 |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
StackV2 |
elem_type={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
StatelessIf |
Tout={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} Tin={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} Tcond={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
StatelessMultinomial |
output_dtype={int32,int64} Tseed={int32} T={bfloat16,float} |
StatelessRandomNormal |
Tseed={int32} T={int32,int64} dtype={bfloat16,float} |
StatelessRandomUniform |
Tseed={int32} T={int32,int64} dtype={bfloat16,float} |
StatelessRandomUniformInt |
Tseed={int32} T={int32,int64} dtype={int32,int64} |
StatelessTruncatedNormal |
Tseed={int32} T={int32,int64} dtype={bfloat16,float} |
StatelessWhile |
T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
StopGradient |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
StridedSlice |
Index={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
StridedSliceGrad |
Index={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Sub |
T={bfloat16,complex64,float,int32,int64} |
Sum |
Tidx={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
SymbolicGradient |
Tout={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} Tin={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TPUEmbeddingActivations |
|
Tan |
T={bfloat16,complex64,float,int32,int64} |
Tanh |
T={bfloat16,complex64,float} |
TanhGrad |
T={bfloat16,complex64,float} |
TensorArrayCloseV3 |
|
TensorArrayConcatV3 |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorArrayGatherV3 |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorArrayGradV3 |
|
TensorArrayReadV3 |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorArrayScatterV3 |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorArraySizeV3 |
|
TensorArraySplitV3 |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorArrayV3 |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorArrayWriteV3 |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorListElementShape |
shape_type={int32,int64} |
TensorListPopBack |
element_dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorListPushBack |
element_dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TensorListReserve |
shape_type={int32,int64} element_dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
Tile |
Tmultiples={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TopKV2 |
T={bfloat16,float,int32,uint32} |
Transpose |
Tperm={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
TruncateDiv |
T={bfloat16,complex64,float,int32,int64} |
TruncateMod |
T={bfloat16,float,int32,int64} |
TruncatedNormal |
T={int32,int64} dtype={float} |
Unpack |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
UnsortedSegmentMax |
Tnumsegments={int32,int64} Tindices={int32,int64} T={bfloat16,float,int32,int64,uint32,uint64} |
UnsortedSegmentMin |
Tnumsegments={int32,int64} Tindices={int32,int64} T={bfloat16,float,int32,int64,uint32,uint64} |
UnsortedSegmentProd |
Tnumsegments={int32,int64} Tindices={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
UnsortedSegmentSum |
Tnumsegments={int32,int64} Tindices={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
VarIsInitializedOp |
|
VariableShape |
out_type={int32,int64} |
While |
T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
Xdivy |
T={complex64,float} |
XlaBroadcastHelper |
Tindices={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
XlaConv |
Tindices={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
XlaDequantize |
|
XlaDot |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
XlaDynamicSlice |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaDynamicUpdateSlice |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaHostCompute |
Toutputs={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} Tinputs={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaIf |
Tout={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} Tin={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} Tcond={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
XlaKeyValueSort |
V={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} K={bfloat16,float,int32,int64,uint32,uint64} |
XlaPad |
Tindices={int32,int64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaRecv |
dtype={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaRecvFromHost |
Toutput={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaReduce |
T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
XlaReduceWindow |
Tindices={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
XlaSelectAndScatter |
Tindices={int32,int64} T={bfloat16,complex64,float,int32,int64,uint32,uint64} |
XlaSend |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaSendToHost |
Tinput={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaSort |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
XlaWhile |
T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
Xlogy |
T={complex64,float} |
ZerosLike |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
_Arg |
T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |
_ArrayToList |
out_types={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
_ListToArray |
T={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} Tin={bfloat16,bool,complex64,float,int32,int64,uint32,uint64} |
_Retval |
T={bfloat16,bool,complex64,float,int32,int64,resource,uint32,uint64} |