Pesquisa vetorial para aplicativos de IA generativa

Esta página descreve como o Memorystore para Valkey oferece suporte ao armazenamento e à consulta de dados de vetor para aplicativos de IA generativa, como a geração aumentada de recuperação (RAG) e o LangChain, usando recursos de pesquisa vetorial.

Usar a pesquisa de vetores para IA generativa com o LangChain

A pesquisa de vetores no Memorystore for Valkey é compatível com o framework de LLM de código aberto LangChain. Usar a pesquisa de vetores com o LangChain permite criar soluções para os seguintes casos de uso:

  • RAG
  • Cache de LLM
  • Mecanismo de recomendação
  • Pesquisa semântica
  • Pesquisa por similaridade de imagens

Benefícios da pesquisa vetorial para IA generativa no Memorystore para Valkey

A vantagem de usar o Memorystore para armazenar dados de IA generativa em comparação com outros bancos de dados Google Cloud é a velocidade. A pesquisa de vetores no Memorystore para Valkey usa consultas multithread, resultando em alta capacidade de processamento de consultas (QPS) com baixa latência.

Abordagens para usar a pesquisa vetorial com IA generativa no Memorystore para Valkey

O Memorystore também oferece duas abordagens de pesquisa distintas para ajudar você a encontrar o equilíbrio certo entre velocidade e precisão. A opção Hierarchical Navigable Small World (HNSW) oferece resultados rápidos e aproximados, ideal para grandes conjuntos de dados em que uma correspondência próxima é suficiente. Se você precisar de precisão absoluta, a abordagem FLAT produz respostas exatas, embora possa levar um pouco mais de tempo para processar.

Se você quiser otimizar seu aplicativo para as velocidades de leitura e gravação de dados vetoriais mais rápidas, o Memorystore para Valkey provavelmente será a melhor opção.