Halaman ini menjelaskan cara Memorystore untuk Valkey mendukung penyimpanan dan kueri data vektor untuk aplikasi AI generatif, seperti Retrieval Augmented Generation (RAG) dan LangChain, dengan menggunakan kemampuan penelusuran vektor.
Menggunakan penelusuran vektor untuk AI generatif dengan LangChain
Penelusuran vektor di Memorystore for Valkey kompatibel dengan framework LLM open source LangChain. Dengan penelusuran vektor dan LangChain, Anda dapat membangun solusi untuk kasus penggunaan berikut:
- RAG
- Cache LLM
- Mesin pemberi saran
- Penelusuran semantik
- Penelusuran kemiripan gambar
Manfaat penelusuran vektor untuk AI generatif di Memorystore for Valkey
Keuntungan menggunakan Memorystore untuk menyimpan data AI generatif Anda, dibandingkan dengan database lain, adalah kecepatannya. Google Cloud Penelusuran vektor di Memorystore for Valkey memanfaatkan kueri multi-thread, sehingga menghasilkan throughput kueri (QPS) yang tinggi dengan latensi rendah.
Pendekatan untuk menggunakan penelusuran vektor untuk AI generatif di Memorystore for Valkey
Memorystore juga menyediakan dua pendekatan penelusuran yang berbeda untuk membantu Anda menemukan keseimbangan yang tepat antara kecepatan dan akurasi. Opsi Hierarchical Navigable Small World (HNSW) memberikan hasil perkiraan yang cepat — ideal untuk set data besar di mana kecocokan terdekat sudah cukup. Jika Anda memerlukan presisi
mutlak, pendekatan FLAT menghasilkan jawaban yang tepat, meskipun pemrosesannya mungkin memerlukan waktu yang sedikit lebih lama.
Jika Anda ingin mengoptimalkan aplikasi untuk kecepatan baca dan tulis data vektor tercepat, Memorystore for Valkey kemungkinan merupakan opsi terbaik untuk Anda.