Utilizzo del connettore Cloud Storage con Apache Spark

Questo tutorial mostra come eseguire il codice di esempio che utilizza il connettore Cloud Storage con Apache Spark.

Prepara il job Spark di conteggio parole

Seleziona una scheda di seguito per seguire i passaggi per preparare un pacchetto o un file di job da inviare al cluster. Puoi preparare uno dei seguenti tipi di lavoro:

Java

  1. Copia il file pom.xml nella macchina locale. Il seguente file pom.xml specifica le dipendenze delle librerie Scala e Spark, a cui viene assegnato un ambito provided per indicare che il cluster Dataproc fornirà queste librerie in fase di runtime. Il file pom.xml non specifica una dipendenza da Cloud Storage perché il connettore implementa l'interfaccia HDFS standard. Quando un job Spark accede ai file del cluster Cloud Storage (file con URI che iniziano con gs://), il sistema utilizza automaticamente il connettore Cloud Storage per accedere ai file in Cloud Storage
    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
      <modelVersion>4.0.0</modelVersion>
    
      <groupId>dataproc.codelab</groupId>
      <artifactId>word-count</artifactId>
      <version>1.0</version>
    
      <properties>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
      </properties>
    
      <dependencies>
        <dependency>
          <groupId>org.scala-lang</groupId>
          <artifactId>scala-library</artifactId>
          <version>Scala version, for example, 2.11.8</version>
          <scope>provided</scope>
        </dependency>
        <dependency>
          <groupId>org.apache.spark</groupId>
          <artifactId>spark-core_Scala major.minor.version, for example, 2.11</artifactId>
          <version>Spark version, for example, 2.3.1</version>
          <scope>provided</scope>
        </dependency>
      </dependencies>
    </project>
  2. Copia il codice WordCount.java elencato di seguito nel computer locale.
    1. Crea un insieme di directory con il percorso src/main/java/dataproc/codelab:
      mkdir -p src/main/java/dataproc/codelab
      
    2. Copia WordCount.java sulla tua macchina locale in src/main/java/dataproc/codelab:
      cp WordCount.java src/main/java/dataproc/codelab
      

    WordCount.java è un job Spark in Java che legge file di testo da Cloud Storage, esegue un conteggio delle parole e poi scrive i risultati del file di testo in Cloud Storage.

    package dataproc.codelab;
    
    import java.util.Arrays;
    import org.apache.spark.SparkConf;
    import org.apache.spark.api.java.JavaPairRDD;
    import org.apache.spark.api.java.JavaRDD;
    import org.apache.spark.api.java.JavaSparkContext;
    import scala.Tuple2;
    
    public class WordCount {
      public static void main(String[] args) {
        if (args.length != 2) {
          throw new IllegalArgumentException("Exactly 2 arguments are required: <inputUri> <outputUri>");
        }
        String inputPath = args[0];
        String outputPath = args[1];
        JavaSparkContext sparkContext = new JavaSparkContext(new SparkConf().setAppName("Word Count"));
        JavaRDD<String> lines = sparkContext.textFile(inputPath);
        JavaRDD<String> words = lines.flatMap(
            (String line) -> Arrays.asList(line.split(" ")).iterator()
        );
        JavaPairRDD<String, Integer> wordCounts = words.mapToPair(
            (String word) -> new Tuple2<>(word, 1)
        ).reduceByKey(
            (Integer count1, Integer count2) -> count1 + count2
        );
        wordCounts.saveAsTextFile(outputPath);
      }
    }
  3. Crea il pacchetto.
    mvn clean package
    
    Se la build ha esito positivo, viene creato un target/word-count-1.0.jar.
  4. Trasferisci il pacchetto a Cloud Storage.
    gcloud storage cp target/word-count-1.0.jar \
        gs://${BUCKET_NAME}/java/word-count-1.0.jar
    

Scala

  1. Copia il file build.sbt nella macchina locale. Il seguente file build.sbt specifica le dipendenze delle librerie Scala e Spark, a cui viene assegnato un ambito provided per indicare che il cluster Dataproc fornirà queste librerie in fase di runtime. Il file build.sbt non specifica una dipendenza da Cloud Storage perché il connettore implementa l'interfaccia HDFS standard. Quando un job Spark accede ai file del cluster Cloud Storage (file con URI che iniziano con gs://), il sistema utilizza automaticamente il connettore Cloud Storage per accedere ai file in Cloud Storage
    scalaVersion := "Scala version, for example, 2.11.8"
    
    name := "word-count"
    organization := "dataproc.codelab"
    version := "1.0"
    
    libraryDependencies ++= Seq(
      "org.scala-lang" % "scala-library" % scalaVersion.value % "provided",
      "org.apache.spark" %% "spark-core" % "Spark version, for example, 2.3.1" % "provided"
    )
  2. Copia word-count.scala sulla tua macchina locale. Si tratta di un job Spark in Java che legge file di testo da Cloud Storage, esegue un conteggio delle parole e poi scrive i risultati del file di testo in Cloud Storage.
    package dataproc.codelab
    
    import org.apache.spark.SparkContext
    import org.apache.spark.SparkConf
    
    object WordCount {
      def main(args: Array[String]) {
        if (args.length != 2) {
          throw new IllegalArgumentException(
              "Exactly 2 arguments are required: <inputPath> <outputPath>")
        }
    
        val inputPath = args(0)
        val outputPath = args(1)
    
        val sc = new SparkContext(new SparkConf().setAppName("Word Count"))
        val lines = sc.textFile(inputPath)
        val words = lines.flatMap(line => line.split(" "))
        val wordCounts = words.map(word => (word, 1)).reduceByKey(_ + _)
        wordCounts.saveAsTextFile(outputPath)
      }
    }
  3. Crea il pacchetto.
    sbt clean package
    
    Se la build ha esito positivo, viene creato un target/scala-2.11/word-count_2.11-1.0.jar.
  4. Trasferisci il pacchetto a Cloud Storage.
    gcloud storage cp target/scala-2.11/word-count_2.11-1.0.jar \
        gs://${BUCKET_NAME}/scala/word-count_2.11-1.0.jar
    

Python

  1. Copia word-count.py sulla tua macchina locale. Si tratta di un job Spark in Python che utilizza PySpark per leggere i file di testo da Cloud Storage, esegue un conteggio delle parole e poi scrive i risultati del file di testo in Cloud Storage.
    #!/usr/bin/env python
    
    import pyspark
    import sys
    
    if len(sys.argv) != 3:
      raise Exception("Exactly 2 arguments are required: <inputUri> <outputUri>")
    
    inputUri=sys.argv[1]
    outputUri=sys.argv[2]
    
    sc = pyspark.SparkContext()
    lines = sc.textFile(sys.argv[1])
    words = lines.flatMap(lambda line: line.split())
    wordCounts = words.map(lambda word: (word, 1)).reduceByKey(lambda count1, count2: count1 + count2)
    wordCounts.saveAsTextFile(sys.argv[2])

Invia il job

Esegui il seguente comando gcloud per inviare il job di conteggio parole al cluster Dataproc.

Java

gcloud dataproc jobs submit spark \
    --cluster=${CLUSTER} \
    --class=dataproc.codelab.WordCount \
    --jars=gs://${BUCKET_NAME}/java/word-count-1.0.jar \
    --region=${REGION} \
    -- gs://${BUCKET_NAME}/input/ gs://${BUCKET_NAME}/output/

Scala

gcloud dataproc jobs submit spark \
    --cluster=${CLUSTER} \
    --class=dataproc.codelab.WordCount \
    --jars=gs://${BUCKET_NAME}/scala/word-count_2.11-1.0.jar \
    --region=${REGION} \
    -- gs://${BUCKET_NAME}/input/ gs://${BUCKET_NAME}/output/

Python

gcloud dataproc jobs submit pyspark word-count.py \
    --cluster=${CLUSTER} \
    --region=${REGION} \
    -- gs://${BUCKET_NAME}/input/ gs://${BUCKET_NAME}/output/

Visualizzare l'output

Al termine del job, esegui questo comando gcloud CLI per visualizzare l'output del conteggio delle parole.

gcloud storage cat gs://${BUCKET_NAME}/output/*

L'output del conteggio delle parole dovrebbe essere simile al seguente:

(a,2)
(call,1)
(What's,1)
(sweet.,1)
(we,1)
(as,1)
(name?,1)
(any,1)
(other,1)
(rose,1)
(smell,1)
(name,1)
(would,1)
(in,1)
(which,1)
(That,1)
(By,1)