在 Vertex AI Agent Engine 上开发和部署智能体
本页面演示了如何使用以下智能体框架创建智能体并将其部署到 Vertex AI Agent Engine 运行时:
本快速入门将引导您完成以下步骤:
设置 Google Cloud 项目。
安装 Vertex AI SDK for Python 和您选择的框架。
开发货币兑换代理。
将代理部署到 Vertex AI Agent Engine 运行时。
测试已部署的代理。
如需了解使用智能体开发套件的快速入门,请参阅使用智能体开发套件在 Vertex AI Agent Engine 上开发和部署智能体。
准备工作
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
Roles required to select or create a project
- Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
-
Create a project: To create a project, you need the Project Creator role
(
roles/resourcemanager.projectCreator), which contains theresourcemanager.projects.createpermission. Learn how to grant roles.
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the Vertex AI and Cloud Storage APIs.
Roles required to enable APIs
To enable APIs, you need the Service Usage Admin IAM role (
roles/serviceusage.serviceUsageAdmin), which contains theserviceusage.services.enablepermission. Learn how to grant roles. -
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
Roles required to select or create a project
- Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
-
Create a project: To create a project, you need the Project Creator role
(
roles/resourcemanager.projectCreator), which contains theresourcemanager.projects.createpermission. Learn how to grant roles.
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the Vertex AI and Cloud Storage APIs.
Roles required to enable APIs
To enable APIs, you need the Service Usage Admin IAM role (
roles/serviceusage.serviceUsageAdmin), which contains theserviceusage.services.enablepermission. Learn how to grant roles. -
Vertex AI User (
roles/aiplatform.user) -
Storage Admin (
roles/storage.admin) 运行以下命令以安装 Vertex AI SDK for Python 和其他所需的软件包:
LangGraph
pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,langchain]>=1.112LangChain
pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,langchain]>=1.112AG2
pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,ag2]>=1.112LlamaIndex
pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,llama_index]>=1.112以用户身份进行身份验证
Colab
运行以下代码:
from google.colab import auth auth.authenticate_user(project_id="PROJECT_ID")Cloud Shell
您无需执行任何操作。
本地 Shell
运行以下命令:
gcloud auth application-default login快速模式
如果您使用的是快速模式下的 Vertex AI,则无需执行任何操作。
运行以下代码以导入 Vertex AI Agent Engine 并初始化 SDK:
为智能体开发货币兑换工具:
def get_exchange_rate( currency_from: str = "USD", currency_to: str = "EUR", currency_date: str = "latest", ): """Retrieves the exchange rate between two currencies on a specified date.""" import requests response = requests.get( f"https://api.frankfurter.app/{currency_date}", params={"from": currency_from, "to": currency_to}, ) return response.json()实例化代理:
LangGraph
from vertexai import agent_engines agent = agent_engines.LanggraphAgent( model="gemini-2.0-flash", tools=[get_exchange_rate], model_kwargs={ "temperature": 0.28, "max_output_tokens": 1000, "top_p": 0.95, }, )LangChain
from vertexai import agent_engines agent = agent_engines.LangchainAgent( model="gemini-2.0-flash", tools=[get_exchange_rate], model_kwargs={ "temperature": 0.28, "max_output_tokens": 1000, "top_p": 0.95, }, )AG2
from vertexai import agent_engines agent = agent_engines.AG2Agent( model="gemini-2.0-flash", runnable_name="Get Exchange Rate Agent", tools=[get_exchange_rate], )LlamaIndex
from vertexai.preview import reasoning_engines def runnable_with_tools_builder(model, runnable_kwargs=None, **kwargs): from llama_index.core.query_pipeline import QueryPipeline from llama_index.core.tools import FunctionTool from llama_index.core.agent import ReActAgent llama_index_tools = [] for tool in runnable_kwargs.get("tools"): llama_index_tools.append(FunctionTool.from_defaults(tool)) agent = ReActAgent.from_tools(llama_index_tools, llm=model, verbose=True) return QueryPipeline(modules = {"agent": agent}) agent = reasoning_engines.LlamaIndexQueryPipelineAgent( model="gemini-2.0-flash", runnable_kwargs={"tools": [get_exchange_rate]}, runnable_builder=runnable_with_tools_builder, )在本地测试代理:
LangGraph
agent.query(input={"messages": [ ("user", "What is the exchange rate from US dollars to SEK today?"), ]})LangChain
agent.query( input="What is the exchange rate from US dollars to SEK today?" )AG2
agent.query( input="What is the exchange rate from US dollars to SEK today?" )LlamaIndex
agent.query( input="What is the exchange rate from US dollars to SEK today?" )
如需获得使用 Vertex AI Agent Engine 所需的权限,请让您的管理员为您授予项目的以下 IAM 角色:
如需详细了解如何授予角色,请参阅管理对项目、文件夹和组织的访问权限。
安装并初始化 Python 版 Vertex AI SDK
开发代理
部署代理
通过在 Vertex AI 中创建 reasoningEngine 资源来部署智能体:
LangGraph
remote_agent = client.agent_engines.create(
agent,
config={
"requirements": ["google-cloud-aiplatform[agent_engines,langchain]"],
},
)
LangChain
remote_agent = client.agent_engines.create(
agent,
config={
"requirements": ["google-cloud-aiplatform[agent_engines,langchain]"],
},
)
AG2
remote_agent = client.agent_engines.create(
agent,
config={
"requirements": ["google-cloud-aiplatform[agent_engines,ag2]"],
},
)
LlamaIndex
remote_agent = client.agent_engines.create(
agent,
config={
"requirements": ["google-cloud-aiplatform[agent_engines,llama_index]"],
},
)
使用代理
通过发送查询来测试部署的智能体:
LangGraph
remote_agent.query(input={"messages": [
("user", "What is the exchange rate from US dollars to SEK today?"),
]})
LangChain
remote_agent.query(
input="What is the exchange rate from US dollars to SEK today?"
)
AG2
remote_agent.query(
input="What is the exchange rate from US dollars to SEK today?"
)
LlamaIndex
remote_agent.query(
input="What is the exchange rate from US dollars to SEK today?"
)
清理
为避免因本页中使用的资源导致您的 Google Cloud 账号产生费用,请按照以下步骤操作。
remote_agent.delete(force=True)