Alat OpenAPI memungkinkan pelatih AI mengambil data secara dinamis dari API jarak jauh berdasarkan konteks percakapan.
Sebelum memulai
Jika Anda mengalami kesulitan dengan API yang sudah ada, gunakan pendekatan fleksibel berikut:
- Buat Cloud Run Functions sebagai wrapper API yang sudah ada. Fungsi Cloud Run mengisi parameter wajib tambahan dan melakukan pemrosesan pasca-respons API.
- Buat alat OpenAPI untuk memanggil fungsi Cloud Run Anda.
Meskipun Datastore API mungkin memerlukan parameter input tambahan, seperti menyetel mode hasil penelusuran, fungsi Cloud Run hanya memerlukan satu parameter (kueri), yang dapat diekstrak oleh pelatih AI dari konteks percakapan. Dalam hal pemrosesan respons, fungsi Cloud Run hanya menampilkan hasil teratas, bukan semua hasil.
Ikuti langkah-langkah berikut untuk mengakses Datastore.
Langkah 1: Buat aplikasi penelusuran dan Datastore
- Ikuti langkah-langkah di Datastore untuk membuat Datastore.
- Ikuti langkah-langkah untuk Membuat aplikasi penelusuran.
- Periksa Datastore dan aplikasi penelusuran menggunakan API untuk memverifikasi jenis solusi, tingkat penelusuran, dan apakah chunking diaktifkan.
Jalankan perintah berikut untuk mengambil chunking.
gcurl -sX GET \ "https://discoveryengine.googleapis.com/v1alpha/projects/${project_id}/locations/global/collections/default_collection/dataStores/${data_store_id}/documentProcessingConfig"
Contoh berikut menunjukkan bahwa chunking diaktifkan.
{ "name": "projects/${project_id}/locations/global/collections/default_collection/dataStores/${data_store_id}/documentProcessingConfig", "chunkingConfig": { "layoutBasedChunkingConfig": { "chunkSize": 500, "includeAncestorHeadings": true } }, "defaultParsingConfig": { "digitalParsingConfig": {} } }
Jalankan perintah berikut untuk mengambil jenis solusi dan tingkat penelusuran.
gcurl -X GET \ "https://discoveryengine.googleapis.com/v1alpha/projects/${project_id}/locations/global/collections/default_collection/engines/${data_store_id}"
Contoh berikut menunjukkan bahwa jenis solusi dan tingkat penelusuran telah diverifikasi.
{ "name": "projects/${project_id}/locations/global/collections/default_collection/engines/${data_store_id}", "displayName": "iphone_", "dataStoreIds": [ "${data_store_id}" ], "solutionType": "SOLUTION_TYPE_SEARCH", "searchEngineConfig": { "searchTier": "SEARCH_TIER_ENTERPRISE" }, "commonConfig": { "companyName": "Google" }, "industryVertical": "GENERIC" }
Langkah 2: Buat fungsi Cloud Run untuk memanggil Datastore
Untuk melakukan autentikasi, konfigurasi fungsi Cloud Run Anda agar memerlukan token identitas. Cloud Run Functions membantu membungkus API yang kompleks menjadi API dasar. Mereka melakukan tindakan berikut:
- Mengisi kolom tambahan dalam permintaan.
- Memanggil Datastore API untuk melakukan penelusuran.
- Memproses respons API dan menampilkan hasil teratas.
Setelah membuat fungsi Cloud Run, buat alat OpenAPI untuk memanggil fungsi Cloud Run Anda.
Dalam contoh berikut, fungsi Cloud Run mengonversi Datastore API untuk melakukan penelusuran dan memberi Anda daftar hasil penelusuran.
import os import requests import google.auth import google.auth.transport.requests import functions_framework @functions_framework.http def call_vertex_search(request): """ HTTP Cloud Function to invoke a Vertex AI Search endpoint. """ # --- Configuration - Tailor to your Vertex AI Search specifics --- project_id = ${project_id} engine_id = "${data_store_id}" # Establish the Vertex AI Search endpoint URL endpoint = f"https://discoveryengine.googleapis.com/v1alpha/projects/${project_id}/locations/global/collections/default_collection/engines/{engine_id}/servingConfigs/default_chat:search" # --- Acquire Authentication Token --- try: credentials, project = google.auth.default() auth_req = google.auth.transport.requests.Request() credentials.refresh(auth_req) token = credentials.token except Exception as e: print(f"Authentication token retrieval error: {e}") return f"Authentication token retrieval error: {e}", 500 headers = { "Authorization": f"Bearer {token}", "Content-Type": "application/json", } # --- Formulate Search Query --- # Extract the query from the request; otherwise, employ a default. request_json = request.get_json(silent=True) query = "what is the price of iphone 13?" # Default query if request_json and 'query' in request_json: query = request_json['query'] payload = { "query": query, "page_size": 5, "content_search_spec": { "search_result_mode": "CHUNKS" } # Additional search parameters, such as filters or boost_spec, can be appended here. # "filter": "some_attribute:ANY(\"value\")", } # --- Execute Vertex AI Search API Call --- try: response = requests.post(endpoint, headers=headers, json=payload) response.raise_for_status() # Trigger an exception for unfavorable status codes. search_results = response.json() print(f"Search results: {search_results}") extracted_data = search_results["results"][0]["chunk"]["content"] if extracted_data is not None: print(f"Extracted data: {extracted_data}") return {"content": extracted_data}, 200 else: print("Failed to extract search results from the response.") return "Failed to extract search results from the response", 404 except requests.exceptions.RequestException as e: print(f"Vertex AI Search invocation error: {e}") if e.response is not None: print(f"Error details: {e.response.text}") return f"Vertex AI Search invocation error: {e.response.text}", e.response.status_code return f"Vertex AI Search invocation error: {e}", 500 except Exception as e: print(f"An unanticipated error transpired: {e}") return f"An unanticipated error transpired: {e}", 500
Gunakan Shell untuk menguji fungsi Cloud Run. Coba kirim kueri seperti berapa harga iphone 13, seperti yang ditunjukkan dalam contoh berikut.
export CLOUDSDK_CORE_PROJECT=${project_id} curl -H "Authorization: Bearer "$(gcloud auth print-identity-token) -H "X-Goog-User-Project: ${CLOUDSDK_CORE_PROJECT}" -H "Content-Type: application/json; charset=utf-8" -X GET "https://${CLOUD_FUNCTION_ENDPOINT}/?query=what%20is%20the%20price%20of%20iphone%2013"
Anda akan menerima respons seperti berikut:
{"content":"Table of contents\niPhone price history iPhone 4S (2011)\niPhone 4S original starting MSRP: $199\nInflation-adjusted iPhone 4S price: $280\niPhone 5 (2012)\niPhone 5 Original starting MSRP: $199\nInflation-adjusted iPhone 5 price: $276\niPhone 5S/5C (2013) iPhone 5S original starting MSRP: $199\niPhone 5C original starting MSRP: $99\nInflation-adjusted iPhone 5S price: $270\nInflation-adjusted iPhone 5C price: $134\niPhone 6/6 Plus (2014) Table of contents\niPhone price history iPhone 6 original starting MSRP: $199\niPhone 6 Plus original starting MSRP: $299\nInflation-adjusted iPhone 6 price: $266\nInflation-adjusted iPhone 6 Plus price: $398\niPhone 6S/6S Plus (2015)\niPhone 6S original starting MSRP: $199\niPhone 6S Plus original starting MSRP: $299\nInflation-adjusted iPhone 6S price: $265\nInflation-adjusted iPhone 6S Plus price: $397\niPhone 7/7 Plus (2016) Table of contents\niPhone price history iPhone 7 original starting MSRP: $649\niPhone 7 Plus original starting MSRP: $769\nInflation-adjusted iPhone 7 price: $854\nInflation-adjusted iPhone 7 Plus price: $1,011\niPhone 8/8 Plus (2017)\niPhone 8 original starting MSRP: $699\niPhone 8 Plus original starting MSRP: $799\nInflation-adjusted iPhone 8 price: $900\nInflation-adjusted iPhone 8 Plus price: $1,029\niPhone X (2017)\niPhone X original starting MSRP: $999\nInflation-adjusted iPhone X Plus price: $1,287\niPhone XR (2018)\niPhone XR original starting MSRP: $749\nInflation-adjusted iPhone XR Plus price: $942\niPhone XS/S Max (2018) Table of contents\niPhone price history iPhone XS original starting MSRP: $999\niPhone XS Max original starting MSRP: $1,099\nInflation-adjusted iPhone XS price: $1,254\nInflation-adjusted iPhone XS Plus price: $1,380\niPhone 11/Pro/Pro Max (2019)\niPhone 11 original starting MSRP: $699\niPhone 11 Pro original starting MSRP: $999\niPhone 11 Pro Max original starting MSRP: $1099\nInflation-adjusted iPhone 11 price: $863\nInflation-adjusted iPhone 11 Pro price: $1,232\nInflation-adjusted iPhone 11 Pro Max price: $1,355\niPhone 12/Mini/Pro/Pro Max (2020)\niPhone 12 original starting MSRP: $799 Table of contents\niPhone price history Login iPhone 12 Mini original starting MSRP: $699\niPhone 12 Pro original starting MSRP: $999\niPhone 12 Pro Max original starting MSRP: $1099\nInflation-adjusted iPhone 12 price: $976\nInflation-adjusted iPhone 12 Mini price: $853\nInflation-adjusted iPhone 12 Pro price: $1,218\nInflation-adjusted iPhone 12 Pro Max price: $1,340 iPhone 13/Mini/Pro/Pro Max (2021)\niPhone 13 original starting MSRP: $799\niPhone 13 Mini original starting MSRP: $699\niPhone 13 Pro original starting MSRP: $999\niPhone 13 Pro Max original starting MSRP: $1099\nInflation-adjusted iPhone 13 price: $931\nInflation-adjusted iPhone 13 Mini price: $814\nInflation-adjusted iPhone 13 Pro price: $1,163\nInflation-adjusted iPhone 13 Pro Max price: $1,279\niPhone 14/Plus/Pro/Pro Max (2022) Table of contents\niPhone price history Robert Triggs / Android Authority"}
Langkah 3: Buat alat OpenAPI
Ikuti langkah-langkah di alat OpenAPI and Integration Connectors untuk membuat alat OpenAPI.
Contoh berikut menggambarkan cara alat OpenAPI berinteraksi dengan API baru yang disediakan oleh fungsi Cloud Run Anda.
openapi: 3.0.0 info: title: iphone_price_tool description: An API to search document about iPhone prices. version: 1.0.0 servers: - url: https://${CLOUD_FUNCTION_ENDPOINT} paths: /: get: summary: Search information about iphone prices operationId: search parameters: - in: query name: query schema: type: string required: true description: The user's question about iphone price responses: '200': description: Retrieved information about iphone price content: application/json: schema: type: object properties: content: type: string description: Information about iphone price '400': description: Bad request, query parameter is missing. content: text/plain: schema: type: string example: "Please provide a 'query' as a URL parameter for POST requests (e.g., ?query=your_question)." '500': description: Internal server error. content: text/plain: schema: type: string example: "Error querying: An unexpected error occurred."
Langkah 4: Buat generator
Ikuti langkah-langkah di alat OpenAPI untuk membuat generator pelatih AI. Gunakan konten yang dibuat oleh pelatih AI untuk membuat perintah LLM.