Analisar entidades

A análise de entidades inspeciona o texto fornecido para encontrar entidades conhecidas (nomes próprios, como figuras públicas, pontos de referência, etc.) e devolve informações sobre essas entidades. A análise de entidades é realizada com o método analyzeEntities. Para obter informações sobre os tipos de entidades que a linguagem natural identifica, consulte a documentação Entity. Para obter informações sobre os idiomas suportados pela API Natural Language, consulte o artigo Suporte de idiomas.

Esta secção demonstra algumas formas de detetar entidades num documento. Tem de enviar uma solicitação separada para cada documento.

Analisar entidades numa string

Segue-se um exemplo de como realizar a análise de entidades numa string de texto enviada diretamente para a API Natural Language:

Protocolo

Para analisar entidades num documento, faça um pedido POST ao método REST documents:analyzeEntities e forneça o corpo do pedido adequado, conforme mostrado no exemplo seguinte.

O exemplo usa o comando gcloud auth application-default print-access-token para obter um token de acesso para uma conta de serviço configurada para o projeto usando a CLI gcloud da Google Cloud Platform. Para obter instruções sobre a instalação da CLI gcloud e a configuração de um projeto com uma conta de serviço, consulte o guia de início rápido.

curl -X POST \
     -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
     -H "Content-Type: application/json; charset=utf-8" \
     --data "{
  'encodingType': 'UTF8',
  'document': {
    'type': 'PLAIN_TEXT',
    'content': 'President Trump will speak from the White House, located
  at 1600 Pennsylvania Ave NW, Washington, DC, on October 7.'
  }
}" "https://language.googleapis.com/v2/documents:analyzeEntities"

Se não especificar document.language_code, o idioma é detetado automaticamente. Para informações sobre os idiomas suportados pela API Natural Language, consulte o artigo Suporte de idiomas. Consulte a Document documentação de referência para obter mais informações sobre a configuração do corpo do pedido.

Se o pedido for bem-sucedido, o servidor devolve um código de estado HTTP 200 OK e a resposta no formato JSON:

{
  "entities": [
    {
      "name": "October 7",
      "type": "DATE",
      "metadata": {
        "month": "10",
        "day": "7"
      },
      "mentions": [
        {
          "text": {
            "content": "October 7",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600",
      "type": "NUMBER",
      "metadata": {
        "value": "1600"
      },
      "mentions": [
        {
          "text": {
            "content": "1600",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "7",
      "type": "NUMBER",
      "metadata": {
        "value": "7"
      },
      "mentions": [
        {
          "text": {
            "content": "7",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600 Pennsylvania Ave NW, Washington, DC",
      "type": "ADDRESS",
      "metadata": {
        "locality": "Washington",
        "narrow_region": "District of Columbia",
        "street_name": "Pennsylvania Avenue Northwest",
        "street_number": "1600",
        "broad_region": "District of Columbia",
        "country": "US"
      },
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW, Washington, DC",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600 Pennsylvania Ave NW",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.901
        }
      ]
    },
    {
      "name": "President",
      "type": "PERSON",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "President",
            "beginOffset": -1
          },
          "type": "COMMON",
          "probability": 0.941
        }
      ]
    },
    {
      "name": "Trump",
      "type": "PERSON",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "Trump",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.948
        }
      ]
    },
    {
      "name": "Washington, DC",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "Washington, DC",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.92
        }
      ]
    },
    {
      "name": "White House",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "White House",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.785
        }
      ]
    }
  ],
  "languageCode": "en",
  "languageSupported": true
}

A matriz entities contém objetos Entity que representam as entidades detetadas, que incluem informações como o nome e o tipo da entidade.

gcloud

Consulte o comando analyze-entities para ver os detalhes completos.

Para realizar a análise de entidades, use a CLI gcloud e use a flag --content para identificar o conteúdo a analisar:

gcloud ml language analyze-entities --content="President Trump will speak from the White House, located
  at 1600 Pennsylvania Ave NW, Washington, DC, on October 7."

Se o pedido for bem-sucedido, o servidor devolve uma resposta no formato JSON:

{
  "entities": [
    {
      "name": "Trump",
      "type": "PERSON",
      "metadata": {
        "mid": "/m/0cqt90",
        "wikipedia_url": "https://en.wikipedia.org/wiki/Donald_Trump"
      },
      "salience": 0.7936003,
      "mentions": [
        {
          "text": {
            "content": "Trump",
            "beginOffset": 10
          },
          "type": "PROPER"
        },
        {
          "text": {
            "content": "President",
            "beginOffset": 0
          },
          "type": "COMMON"
        }
      ]
    },
    {
      "name": "White House",
      "type": "LOCATION",
      "metadata": {
        "mid": "/m/081sq",
        "wikipedia_url": "https://en.wikipedia.org/wiki/White_House"
      },
      "salience": 0.09172433,
      "mentions": [
        {
          "text": {
            "content": "White House",
            "beginOffset": 36
          },
          "type": "PROPER"
        }
      ]
    },
    {
      "name": "Pennsylvania Ave NW",
      "type": "LOCATION",
      "metadata": {
        "mid": "/g/1tgb87cq"
      },
      "salience": 0.085507184,
      "mentions": [
        {
          "text": {
            "content": "Pennsylvania Ave NW",
            "beginOffset": 65
          },
          "type": "PROPER"
        }
      ]
    },
    {
      "name": "Washington, DC",
      "type": "LOCATION",
      "metadata": {
        "mid": "/m/0rh6k",
        "wikipedia_url": "https://en.wikipedia.org/wiki/Washington,_D.C."
      },
      "salience": 0.029168168,
      "mentions": [
        {
          "text": {
            "content": "Washington, DC",
            "beginOffset": 86
          },
          "type": "PROPER"
        }
      ]
    }
    {
      "name": "1600 Pennsylvania Ave NW, Washington, DC",
      "type": "ADDRESS",
      "metadata": {
        "country": "US",
        "sublocality": "Fort Lesley J. McNair",
        "locality": "Washington",
        "street_name": "Pennsylvania Avenue Northwest",
        "broad_region": "District of Columbia",
        "narrow_region": "District of Columbia",
        "street_number": "1600"
      },
      "salience": 0,
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW, Washington, DC",
            "beginOffset": 60
          },
          "type": "TYPE_UNKNOWN"
        }
      ]
      }
    }
    {
      "name": "1600",
       "type": "NUMBER",
       "metadata": {
           "value": "1600"
       },
       "salience": 0,
       "mentions": [
         {
          "text": {
              "content": "1600",
              "beginOffset": 60
           },
           "type": "TYPE_UNKNOWN"
        }
     ]
     },
     {
       "name": "October 7",
       "type": "DATE",
       "metadata": {
         "day": "7",
         "month": "10"
       },
       "salience": 0,
       "mentions": [
         {
           "text": {
             "content": "October 7",
             "beginOffset": 105
            },
           "type": "TYPE_UNKNOWN"
         }
       ]
     }
     {
       "name": "7",
       "type": "NUMBER",
       "metadata": {
         "value": "7"
       },
       "salience": 0,
       "mentions": [
         {
           "text": {
             "content": "7",
             "beginOffset": 113
           },
         "type": "TYPE_UNKNOWN"
         }
        ]
     }
  ],
  "language": "en"
}

A matriz entities contém Entity objetos que representam as entidades detetadas, que incluem informações como o nome e o tipo da entidade.

Go

Para saber como instalar e usar a biblioteca cliente para a API Natural Language, consulte o artigo Bibliotecas cliente da API Natural Language. Para mais informações, consulte a documentação de referência da API Gode linguagem natural.

Para se autenticar na API Natural Language, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.

import (
	"context"
	"fmt"
	"io"

	language "cloud.google.com/go/language/apiv2"
	"cloud.google.com/go/language/apiv2/languagepb"
)

// analyzeEntities sends a string of text to the Cloud Natural Language API to
// detect the entities of the text.
func analyzeEntities(w io.Writer, text string) error {
	ctx := context.Background()

	// Initialize client.
	client, err := language.NewClient(ctx)
	if err != nil {
		return err
	}
	defer client.Close()

	resp, err := client.AnalyzeEntities(ctx, &languagepb.AnalyzeEntitiesRequest{
		Document: &languagepb.Document{
			Source: &languagepb.Document_Content{
				Content: text,
			},
			Type: languagepb.Document_PLAIN_TEXT,
		},
		EncodingType: languagepb.EncodingType_UTF8,
	})

	if err != nil {
		return fmt.Errorf("AnalyzeEntities: %w", err)
	}
	fmt.Fprintf(w, "Response: %q\n", resp)

	return nil
}

Java

Para saber como instalar e usar a biblioteca cliente para a API Natural Language, consulte o artigo Bibliotecas cliente da API Natural Language. Para mais informações, consulte a documentação de referência da API Javade linguagem natural.

Para se autenticar na API Natural Language, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.

// Instantiate the Language client com.google.cloud.language.v2.LanguageServiceClient
try (LanguageServiceClient language = LanguageServiceClient.create()) {
  Document doc = Document.newBuilder().setContent(text).setType(Type.PLAIN_TEXT).build();
  AnalyzeEntitiesRequest request =
      AnalyzeEntitiesRequest.newBuilder()
          .setDocument(doc)
          .setEncodingType(EncodingType.UTF16)
          .build();

  AnalyzeEntitiesResponse response = language.analyzeEntities(request);

  // Print the response
  for (Entity entity : response.getEntitiesList()) {
    System.out.printf("Entity: %s", entity.getName());
    System.out.println("Metadata: ");
    for (Map.Entry<String, String> entry : entity.getMetadataMap().entrySet()) {
      System.out.printf("%s : %s", entry.getKey(), entry.getValue());
    }
    for (EntityMention mention : entity.getMentionsList()) {
      System.out.printf("Begin offset: %d\n", mention.getText().getBeginOffset());
      System.out.printf("Content: %s\n", mention.getText().getContent());
      System.out.printf("Type: %s\n\n", mention.getType());
      System.out.printf("Probability: %s\n\n", mention.getProbability());
    }
  }
}

Node.js

Para saber como instalar e usar a biblioteca cliente para a API Natural Language, consulte o artigo Bibliotecas cliente da API Natural Language. Para mais informações, consulte a documentação de referência da API Node.jsde linguagem natural.

Para se autenticar na API Natural Language, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.

// Imports the Google Cloud client library
const language = require('@google-cloud/language').v2;

// Creates a client
const client = new language.LanguageServiceClient();

/**
 * TODO(developer): Uncomment the following line to run this code.
 */
// const text = 'Your text to analyze, e.g. Hello, world!';

// Prepares a document, representing the provided text
const document = {
  content: text,
  type: 'PLAIN_TEXT',
};

// Detects entities in the document
const [result] = await client.analyzeEntities({document});

const entities = result.entities;

console.log('Entities:');
entities.forEach(entity => {
  console.log(entity.name);
  console.log(` - Type: ${entity.type}`);
  if (entity.metadata) {
    console.log(` - Metadata: ${entity.metadata}`);
  }
});

Python

Para saber como instalar e usar a biblioteca cliente para a API Natural Language, consulte o artigo Bibliotecas cliente da API Natural Language. Para mais informações, consulte a documentação de referência da API Pythonde linguagem natural.

Para se autenticar na API Natural Language, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.

from google.cloud import language_v2


def sample_analyze_entities(text_content: str = "California is a state.") -> None:
    """
    Analyzes Entities in a string.

    Args:
      text_content: The text content to analyze
    """

    client = language_v2.LanguageServiceClient()

    # Available types: PLAIN_TEXT, HTML
    document_type_in_plain_text = language_v2.Document.Type.PLAIN_TEXT

    # Optional. If not specified, the language is automatically detected.
    # For list of supported languages:
    # https://cloud.google.com/natural-language/docs/languages
    language_code = "en"
    document = {
        "content": text_content,
        "type_": document_type_in_plain_text,
        "language_code": language_code,
    }

    # Available values: NONE, UTF8, UTF16, UTF32.
    # See https://cloud.google.com/natural-language/docs/reference/rest/v2/EncodingType.
    encoding_type = language_v2.EncodingType.UTF8

    response = client.analyze_entities(
        request={"document": document, "encoding_type": encoding_type}
    )

    for entity in response.entities:
        print(f"Representative name for the entity: {entity.name}")

        # Get entity type, e.g. PERSON, LOCATION, ADDRESS, NUMBER, et al.
        # See https://cloud.google.com/natural-language/docs/reference/rest/v2/Entity#type.
        print(f"Entity type: {language_v2.Entity.Type(entity.type_).name}")

        # Loop over the metadata associated with entity.
        # Some entity types may have additional metadata, e.g. ADDRESS entities
        # may have metadata for the address street_name, postal_code, et al.
        for metadata_name, metadata_value in entity.metadata.items():
            print(f"{metadata_name}: {metadata_value}")

        # Loop over the mentions of this entity in the input document.
        # The API currently supports proper noun mentions.
        for mention in entity.mentions:
            print(f"Mention text: {mention.text.content}")

            # Get the mention type, e.g. PROPER for proper noun
            print(f"Mention type: {language_v2.EntityMention.Type(mention.type_).name}")

            # Get the probability score associated with the first mention of the entity in the (0, 1.0] range.
            print(f"Probability score: {mention.probability}")

    # Get the language of the text, which will be the same as
    # the language specified in the request or, if not specified,
    # the automatically-detected language.
    print(f"Language of the text: {response.language_code}")

Idiomas adicionais

C#: Siga as instruções de configuração do C# na página de bibliotecas cliente e, em seguida, visite a documentação de referência da linguagem natural para .NET.

PHP: Siga as instruções de configuração do PHP na página de bibliotecas cliente e, em seguida, visite a documentação de referência da linguagem natural para PHP.

Ruby: Siga as instruções de configuração do Ruby na página de bibliotecas cliente e, em seguida, visite a documentação de referência da linguagem natural para Ruby.

Analisar entidades a partir do Cloud Storage

Para sua conveniência, a API Natural Language pode realizar a análise de entidades diretamente num ficheiro localizado no Cloud Storage, sem necessidade de enviar o conteúdo do ficheiro no corpo do seu pedido.

Segue-se um exemplo de como realizar a análise de entidades num ficheiro localizado no Cloud Storage.

Protocolo

Para analisar entidades de um documento armazenado no Cloud Storage, faça um pedido POST ao método REST documents:analyzeEntities e forneça o corpo do pedido adequado com o caminho para o documento, conforme mostrado no exemplo seguinte.

curl -X POST \
     -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
     -H "Content-Type: application/json; charset=utf-8" \
     --data "{
  'document':{
    'type':'PLAIN_TEXT',
    'gcsContentUri':'gs://<bucket-name>/<object-name>'
  }
}" "https://language.googleapis.com/v2/documents:analyzeEntities"

Se não especificar document.language_code, o idioma é detetado automaticamente. Para informações sobre os idiomas suportados pela API Natural Language, consulte o artigo Suporte de idiomas. Consulte a Document documentação de referência para obter mais informações sobre a configuração do corpo do pedido.

Se o pedido for bem-sucedido, o servidor devolve um código de estado HTTP 200 OK e a resposta no formato JSON:

{
  "entities": [
    {
      "name": "October 7",
      "type": "DATE",
      "metadata": {
        "month": "10",
        "day": "7"
      },
      "mentions": [
        {
          "text": {
            "content": "October 7",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600",
      "type": "NUMBER",
      "metadata": {
        "value": "1600"
      },
      "mentions": [
        {
          "text": {
            "content": "1600",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "7",
      "type": "NUMBER",
      "metadata": {
        "value": "7"
      },
      "mentions": [
        {
          "text": {
            "content": "7",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600 Pennsylvania Ave NW, Washington, DC",
      "type": "ADDRESS",
      "metadata": {
        "locality": "Washington",
        "narrow_region": "District of Columbia",
        "street_name": "Pennsylvania Avenue Northwest",
        "street_number": "1600",
        "broad_region": "District of Columbia",
        "country": "US"
      },
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW, Washington, DC",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600 Pennsylvania Ave NW",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.901
        }
      ]
    },
    {
      "name": "President",
      "type": "PERSON",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "President",
            "beginOffset": -1
          },
          "type": "COMMON",
          "probability": 0.941
        }
      ]
    },
    {
      "name": "Trump",
      "type": "PERSON",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "Trump",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.948
        }
      ]
    },
    {
      "name": "Washington, DC",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "Washington, DC",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.92
        }
      ]
    },
    {
      "name": "White House",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "White House",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.785
        }
      ]
    }
  ],
  "languageCode": "en",
  "languageSupported": true
}

A matriz entities contém Entity objetos que representam as entidades detetadas, que incluem informações como o nome e o tipo da entidade.

gcloud

Consulte o comando analyze-entities para ver os detalhes completos.

Para realizar a análise de entidades num ficheiro no Cloud Storage, use a ferramenta de linha de comandos e a flag --content-file para identificar o caminho do ficheiro que contém o conteúdo a analisar:gcloud

gcloud ml language analyze-entities --content-file=gs://YOUR_BUCKET_NAME/YOUR_FILE_NAME

Se o pedido for bem-sucedido, o servidor devolve uma resposta no formato JSON:

{
  "entities": [
    {
      "name": "October 7",
      "type": "DATE",
      "metadata": {
        "month": "10",
        "day": "7"
      },
      "mentions": [
        {
          "text": {
            "content": "October 7",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600",
      "type": "NUMBER",
      "metadata": {
        "value": "1600"
      },
      "mentions": [
        {
          "text": {
            "content": "1600",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "7",
      "type": "NUMBER",
      "metadata": {
        "value": "7"
      },
      "mentions": [
        {
          "text": {
            "content": "7",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600 Pennsylvania Ave NW, Washington, DC",
      "type": "ADDRESS",
      "metadata": {
        "locality": "Washington",
        "narrow_region": "District of Columbia",
        "street_name": "Pennsylvania Avenue Northwest",
        "street_number": "1600",
        "broad_region": "District of Columbia",
        "country": "US"
      },
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW, Washington, DC",
            "beginOffset": -1
          },
          "type": "TYPE_UNKNOWN",
          "probability": 1
        }
      ]
    },
    {
      "name": "1600 Pennsylvania Ave NW",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.901
        }
      ]
    },
    {
      "name": "President",
      "type": "PERSON",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "President",
            "beginOffset": -1
          },
          "type": "COMMON",
          "probability": 0.941
        }
      ]
    },
    {
      "name": "Trump",
      "type": "PERSON",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "Trump",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.948
        }
      ]
    },
    {
      "name": "Washington, DC",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "Washington, DC",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.92
        }
      ]
    },
    {
      "name": "White House",
      "type": "LOCATION",
      "metadata": {},
      "mentions": [
        {
          "text": {
            "content": "White House",
            "beginOffset": -1
          },
          "type": "PROPER",
          "probability": 0.785
        }
      ]
    }
  ],
  "languageCode": "en",
  "languageSupported": true
}

A matriz entities contém Entity objetos que representam as entidades detetadas, que incluem informações como o nome e o tipo da entidade.

Go

Para saber como instalar e usar a biblioteca cliente para a API Natural Language, consulte o artigo Bibliotecas cliente da API Natural Language. Para mais informações, consulte a documentação de referência da API Gode linguagem natural.

Para se autenticar na API Natural Language, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.


func analyzeEntitiesFromGCS(ctx context.Context, gcsURI string) (*languagepb.AnalyzeEntitiesResponse, error) {
	return client.AnalyzeEntities(ctx, &languagepb.AnalyzeEntitiesRequest{
		Document: &languagepb.Document{
			Source: &languagepb.Document_GcsContentUri{
				GcsContentUri: gcsURI,
			},
			Type: languagepb.Document_PLAIN_TEXT,
		},
		EncodingType: languagepb.EncodingType_UTF8,
	})
}

Java

Para saber como instalar e usar a biblioteca cliente para a API Natural Language, consulte o artigo Bibliotecas cliente da API Natural Language. Para mais informações, consulte a documentação de referência da API Javade linguagem natural.

Para se autenticar na API Natural Language, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.

// Instantiate the Language client com.google.cloud.language.v2.LanguageServiceClient
try (LanguageServiceClient language = LanguageServiceClient.create()) {
  // Set the GCS Content URI path to the file to be analyzed
  Document doc =
      Document.newBuilder().setGcsContentUri(gcsUri).setType(Type.PLAIN_TEXT).build();
  AnalyzeEntitiesRequest request =
      AnalyzeEntitiesRequest.newBuilder()
          .setDocument(doc)
          .setEncodingType(EncodingType.UTF16)
          .build();

  AnalyzeEntitiesResponse response = language.analyzeEntities(request);

  // Print the response
  for (Entity entity : response.getEntitiesList()) {
    System.out.printf("Entity: %s\n", entity.getName());
    System.out.println("Metadata: ");
    for (Map.Entry<String, String> entry : entity.getMetadataMap().entrySet()) {
      System.out.printf("%s : %s", entry.getKey(), entry.getValue());
    }
    for (EntityMention mention : entity.getMentionsList()) {
      System.out.printf("Begin offset: %d\n", mention.getText().getBeginOffset());
      System.out.printf("Content: %s\n", mention.getText().getContent());
      System.out.printf("Type: %s\n\n", mention.getType());
      System.out.printf("Probability: %s\n\n", mention.getProbability());
    }
  }
}

Node.js

Para saber como instalar e usar a biblioteca cliente para a API Natural Language, consulte o artigo Bibliotecas cliente da API Natural Language. Para mais informações, consulte a documentação de referência da API Node.jsde linguagem natural.

Para se autenticar na API Natural Language, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.

// Imports the Google Cloud client library
const language = require('@google-cloud/language').v2;

// Creates a client
const client = new language.LanguageServiceClient();

/**
 * TODO(developer): Uncomment the following lines to run this code
 */
// const bucketName = 'Your bucket name, e.g. my-bucket';
// const fileName = 'Your file name, e.g. my-file.txt';

// Prepares a document, representing a text file in Cloud Storage
const document = {
  gcsContentUri: `gs://${bucketName}/${fileName}`,
  type: 'PLAIN_TEXT',
};

// Detects entities in the document
const [result] = await client.analyzeEntities({document});
const entities = result.entities;

console.log('Entities:');
entities.forEach(entity => {
  console.log(entity.name);
  console.log(` - Type: ${entity.type}`);
  if (entity.metadata) {
    console.log(` - Metadata: ${entity.metadata}`);
  }
});

Python

Para saber como instalar e usar a biblioteca cliente para a API Natural Language, consulte o artigo Bibliotecas cliente da API Natural Language. Para mais informações, consulte a documentação de referência da API Pythonde linguagem natural.

Para se autenticar na API Natural Language, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.

from google.cloud import language_v2


def sample_analyze_entities(
    gcs_content_uri: str = "gs://cloud-samples-data/language/entity.txt",
) -> None:
    """
    Analyzes Entities in text file stored in Cloud Storage.

    Args:
      gcs_content_uri: Google Cloud Storage URI where the file content is located.
        e.g. gs://[Your Bucket]/[Path to File]
    """

    client = language_v2.LanguageServiceClient()

    # Available types: PLAIN_TEXT, HTML
    document_type_in_plain_text = language_v2.Document.Type.PLAIN_TEXT

    # Optional. If not specified, the language is automatically detected.
    # For list of supported languages:
    # https://cloud.google.com/natural-language/docs/languages
    language_code = "en"
    document = {
        "gcs_content_uri": gcs_content_uri,
        "type_": document_type_in_plain_text,
        "language_code": language_code,
    }

    # Available values: NONE, UTF8, UTF16, UTF32.
    # See https://cloud.google.com/natural-language/docs/reference/rest/v2/EncodingType.
    encoding_type = language_v2.EncodingType.UTF8

    response = client.analyze_entities(
        request={"document": document, "encoding_type": encoding_type}
    )

    for entity in response.entities:
        print(f"Representative name for the entity: {entity.name}")

        # Get entity type, e.g. PERSON, LOCATION, ADDRESS, NUMBER, et al.
        # See https://cloud.google.com/natural-language/docs/reference/rest/v2/Entity#type.
        print(f"Entity type: {language_v2.Entity.Type(entity.type_).name}")

        # Loop over the metadata associated with entity.
        # Some entity types may have additional metadata, e.g. ADDRESS entities
        # may have metadata for the address street_name, postal_code, et al.
        for metadata_name, metadata_value in entity.metadata.items():
            print(f"{metadata_name}: {metadata_value}")

        # Loop over the mentions of this entity in the input document.
        # The API currently supports proper noun mentions.
        for mention in entity.mentions:
            print(f"Mention text: {mention.text.content}")

            # Get the mention type, e.g. PROPER for proper noun
            print(
                "Mention type:" f" {language_v2.EntityMention.Type(mention.type_).name}"
            )

            # Get the probability score associated with the first mention of the entity in the (0, 1.0] range.
            print(f"Probability score: {mention.probability}")

    # Get the language of the text, which will be the same as
    # the language specified in the request or, if not specified,
    # the automatically-detected language.
    print(f"Language of the text: {response.language_code}")

Idiomas adicionais

C#: Siga as instruções de configuração do C# na página de bibliotecas cliente e, em seguida, visite a documentação de referência da linguagem natural para .NET.

PHP: Siga as instruções de configuração do PHP na página de bibliotecas cliente e, em seguida, visite a documentação de referência da linguagem natural para PHP.

Ruby: Siga as instruções de configuração do Ruby na página de bibliotecas cliente e, em seguida, visite a documentação de referência da linguagem natural para Ruby.