Usa el conector de Cloud Storage con Apache Spark

En este instructivo, se muestra cómo ejecutar código de ejemplo que usa el conector de Cloud Storage con Apache Spark.

Prepara el trabajo de conteo de palabras de Spark

Selecciona una pestaña, a continuación, para seguir los pasos a fin de preparar un paquete o un archivo de trabajo a fin de enviarlo a tu clúster. Puedes preparar uno de los siguientes tipos de trabajos;

Java

  1. Copia el archivo pom.xml en tu máquina local. En el siguiente archivo pom.xml, se especifican las dependencias de la biblioteca de Scala y Spark, que tienen un permiso provided para indicar que el clúster de Dataproc proporcionará estas bibliotecas en el entorno de ejecución. El archivo pom.xml no especifica una dependencia de Cloud Storage porque el conector implementa la interfaz de HDFS estándar. Cuando un trabajo de Spark accede a los archivos del clúster de Cloud Storage (archivos con URI que comienzan con gs://), el sistema usa de forma automática el conector de Cloud Storage para acceder a los archivos en Cloud Storage
    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
      <modelVersion>4.0.0</modelVersion>
    
      <groupId>dataproc.codelab</groupId>
      <artifactId>word-count</artifactId>
      <version>1.0</version>
    
      <properties>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
      </properties>
    
      <dependencies>
        <dependency>
          <groupId>org.scala-lang</groupId>
          <artifactId>scala-library</artifactId>
          <version>Scala version, for example, 2.11.8</version>
          <scope>provided</scope>
        </dependency>
        <dependency>
          <groupId>org.apache.spark</groupId>
          <artifactId>spark-core_Scala major.minor.version, for example, 2.11</artifactId>
          <version>Spark version, for example, 2.3.1</version>
          <scope>provided</scope>
        </dependency>
      </dependencies>
    </project>
  2. Copia el código WordCount.java que aparece a continuación en tu máquina local.
    1. Crea un conjunto de directorios con la ruta src/main/java/dataproc/codelab:
      mkdir -p src/main/java/dataproc/codelab
      
    2. Copia WordCount.java en tu máquina local en src/main/java/dataproc/codelab:
      cp WordCount.java src/main/java/dataproc/codelab
      

    WordCount.java es un trabajo de Spark en Java que lee archivos de texto de Cloud Storage, realiza un conteo de palabras y, luego, escribe los resultados del archivo de texto en Cloud Storage.

    package dataproc.codelab;
    
    import java.util.Arrays;
    import org.apache.spark.SparkConf;
    import org.apache.spark.api.java.JavaPairRDD;
    import org.apache.spark.api.java.JavaRDD;
    import org.apache.spark.api.java.JavaSparkContext;
    import scala.Tuple2;
    
    public class WordCount {
      public static void main(String[] args) {
        if (args.length != 2) {
          throw new IllegalArgumentException("Exactly 2 arguments are required: <inputUri> <outputUri>");
        }
        String inputPath = args[0];
        String outputPath = args[1];
        JavaSparkContext sparkContext = new JavaSparkContext(new SparkConf().setAppName("Word Count"));
        JavaRDD<String> lines = sparkContext.textFile(inputPath);
        JavaRDD<String> words = lines.flatMap(
            (String line) -> Arrays.asList(line.split(" ")).iterator()
        );
        JavaPairRDD<String, Integer> wordCounts = words.mapToPair(
            (String word) -> new Tuple2<>(word, 1)
        ).reduceByKey(
            (Integer count1, Integer count2) -> count1 + count2
        );
        wordCounts.saveAsTextFile(outputPath);
      }
    }
  3. Compila el paquete.
    mvn clean package
    
    Si la compilación se realiza de forma correcta, se crea un target/word-count-1.0.jar.
  4. Almacena el paquete en etapa intermedia en Cloud Storage.
    gcloud storage cp target/word-count-1.0.jar \
        gs://${BUCKET_NAME}/java/word-count-1.0.jar
    

Scala

  1. Copia el archivo build.sbt en tu máquina local. En el siguiente archivo build.sbt, se especifican las dependencias de la biblioteca de Scala y Spark, que tienen un permiso provided para indicar que el clúster de Dataproc proporcionará estas bibliotecas en el entorno de ejecución. El archivo build.sbt no especifica una dependencia de Cloud Storage porque el conector implementa la interfaz de HDFS estándar. Cuando un trabajo de Spark accede a los archivos del clúster de Cloud Storage (archivos con URI que comienzan con gs://), el sistema usa de forma automática el conector de Cloud Storage para acceder a los archivos en Cloud Storage
    scalaVersion := "Scala version, for example, 2.11.8"
    
    name := "word-count"
    organization := "dataproc.codelab"
    version := "1.0"
    
    libraryDependencies ++= Seq(
      "org.scala-lang" % "scala-library" % scalaVersion.value % "provided",
      "org.apache.spark" %% "spark-core" % "Spark version, for example, 2.3.1" % "provided"
    )
  2. Copia word-count.scala a tu máquina local. Este es un trabajo de Spark en Java que lee archivos de texto de Cloud Storage, realiza un conteo de palabras y, luego, escribe los resultados del archivo de texto en Cloud Storage.
    package dataproc.codelab
    
    import org.apache.spark.SparkContext
    import org.apache.spark.SparkConf
    
    object WordCount {
      def main(args: Array[String]) {
        if (args.length != 2) {
          throw new IllegalArgumentException(
              "Exactly 2 arguments are required: <inputPath> <outputPath>")
        }
    
        val inputPath = args(0)
        val outputPath = args(1)
    
        val sc = new SparkContext(new SparkConf().setAppName("Word Count"))
        val lines = sc.textFile(inputPath)
        val words = lines.flatMap(line => line.split(" "))
        val wordCounts = words.map(word => (word, 1)).reduceByKey(_ + _)
        wordCounts.saveAsTextFile(outputPath)
      }
    }
  3. Compila el paquete.
    sbt clean package
    
    Si la compilación se realiza de forma correcta, se crea un target/scala-2.11/word-count_2.11-1.0.jar.
  4. Almacena el paquete en etapa intermedia en Cloud Storage.
    gcloud storage cp target/scala-2.11/word-count_2.11-1.0.jar \
        gs://${BUCKET_NAME}/scala/word-count_2.11-1.0.jar
    

Python

  1. Copia word-count.py a tu máquina local. Este es un trabajo de Spark en Python con PySpark que lee archivos de texto de Cloud Storage, realiza un conteo de palabras y, luego, escribe los resultados del archivo de texto en Cloud Storage.
    #!/usr/bin/env python
    
    import pyspark
    import sys
    
    if len(sys.argv) != 3:
      raise Exception("Exactly 2 arguments are required: <inputUri> <outputUri>")
    
    inputUri=sys.argv[1]
    outputUri=sys.argv[2]
    
    sc = pyspark.SparkContext()
    lines = sc.textFile(sys.argv[1])
    words = lines.flatMap(lambda line: line.split())
    wordCounts = words.map(lambda word: (word, 1)).reduceByKey(lambda count1, count2: count1 + count2)
    wordCounts.saveAsTextFile(sys.argv[2])

Envía el trabajo

Ejecuta el siguiente comando de gcloud para enviar el trabajo de conteo de palabras a tu clúster de Dataproc.

Java

gcloud dataproc jobs submit spark \
    --cluster=${CLUSTER} \
    --class=dataproc.codelab.WordCount \
    --jars=gs://${BUCKET_NAME}/java/word-count-1.0.jar \
    --region=${REGION} \
    -- gs://${BUCKET_NAME}/input/ gs://${BUCKET_NAME}/output/

Scala

gcloud dataproc jobs submit spark \
    --cluster=${CLUSTER} \
    --class=dataproc.codelab.WordCount \
    --jars=gs://${BUCKET_NAME}/scala/word-count_2.11-1.0.jar \
    --region=${REGION} \
    -- gs://${BUCKET_NAME}/input/ gs://${BUCKET_NAME}/output/

Python

gcloud dataproc jobs submit pyspark word-count.py \
    --cluster=${CLUSTER} \
    --region=${REGION} \
    -- gs://${BUCKET_NAME}/input/ gs://${BUCKET_NAME}/output/

Revise el resultado.

Una vez que finalice el trabajo, ejecuta el siguiente comando de gcloud CLI para ver el resultado del recuento de palabras.

gcloud storage cat gs://${BUCKET_NAME}/output/*

El resultado del conteo de palabras debe ser similar al siguiente:

(a,2)
(call,1)
(What's,1)
(sweet.,1)
(we,1)
(as,1)
(name?,1)
(any,1)
(other,1)
(rose,1)
(smell,1)
(name,1)
(would,1)
(in,1)
(which,1)
(That,1)
(By,1)